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Abstract: In this study, fuzzy logic modeling was implemented to fuse the thematic layers derived 
from principal components analysis (PCA) in order to generate mineral prospectivity maps. Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and WorldView-3 (WV-
3) satellite remote sensing data were used. A spatial subset zone of the Central Iranian Terrane (CIT), 
Iran was selected in this study. The PCA technique was implemented for the processing of the da-
tasets and for the production of alteration thematic layers. PCA4, PCA5, and PCA8 were selected as 
the most rational alteration thematic layers of ASTER for the generation of a prospectivity map. The 
fuzzy gamma operator was used to fuse the selected alteration thematic layers. The PCA3, PCA4, 
and PCA6 thematic layers (most rational alteration thematic layers) of WV-3 were fused using the 
fuzzy AND operator. Field reconnaissance, X-ray diffraction (XRD) analysis, and Analytical Spec-
tral Devices (ASD) spectroscopy were carried out to verify the image processing results. Subse-
quently, mineral prospectivity maps were produced showing high-potential zones of Pb-Zn miner-
alization in the study area. 
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1. Introduction 
Remote sensing satellite imagery has been applied to detect alteration minerals, spe-

cifically dolomite and gossan zone [1–7]. A variety of image processing techniques have 
been used to map hydrothermal alteration minerals. However, previous researchers had 
not attempted to fuse the most rational thematic layers to generate a comprehensive min-
eral prospectivity map for sediment-hosted Pb-Zn exploration. Fuzzy logic modeling has 
been successfully used for mineral prospectivity mapping in metallogenic provinces. 
Fuzzy logic modeling for mineral prospectivity mapping typically incorporates three 
main stages, including the fuzzification of evidential data, the logical combination of 
fuzzy evidential maps with the support of an inference network and proper fuzzy set 
operations, and the defuzzification of fuzzy mineral prospectivity output in order to aid 
its interpretation [8]. The Central Iranian Terrane (CIT) area (Figure 1) contains great po-
tential for carbonate-hosted Pb-Zn deposits [9]. At present, there has been no comprehen-
sive study conducted to map hydrothermal alteration mineral zones in this area. In this 
research, ASTER and WorldView-3 (WV-3) satellite remote sensing data were used for 
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prospectivity mapping. The main objective of this analysis was to apply principal compo-
nents analysis (PCA) to ASTER and WV-3 data in order to generate mineral prospectivity 
maps using fuzzy logic modeling. 

 
Figure 1. Geological map of the study area (modified from the Chadormalo geological map, 1:100,000 sheet 
No:71, Geological Survey and Mineral Exploration of Iran (GSMEI)). The black rectangle delimits ASTER im-
agery. 

2. Geological Setting of the Study Area 
Three fault systems are documented in the CIT area, including the Nayband and 

Nehbandan faults, Poshteh-Badam and Kalmard faults, and the Kuhbanan and Rafsanjan 
faults. The occurrence of magmatism in the area is associated with a back-arc extension 
zone [10]. The sediment-hosted Pb-Zn mineralization in the study area is formed during 
synchronous faulting activities with sedimentation, detrital sedimentation associated 
with faulting activities, the replacement of rhyolitic volcanic rocks, and the formation of 
rift sediments and subsidence [10]. 

3. Materials and Methods 
3.1. Data Characteristics 

ASTER and WV-3 were utilized in this analysis. ASTER has three bands in the visible 
and near-infrared (VNIR) region (0.52 to 0.86 μm), six bands in the shortwave infrared 
(SWIR) region (1.6 to 2.43 μm), and five bands in the thermal infrared (TIR) region (8.125 
to 11.65 μm) with 15 m, 30 m, and 90 m spatial resolutions, respectively [11]. The ASTER 
strip size is 60 km. WV-3 has eight spectral bands in the VNIR wavelength region (1.24 m 
spatial resolution) and eight spectral bands in the SWIR region (3.7 m spatial resolution) 
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with a strip size of 13 km [12]. An ASTER scene cloud-free level 1T product and level 2A 
WV-3 data covering the study area were processed in this study. 

3.2. Image Processing 
3.2.1. Principal Components Analysis (PCA) 

PCA is a mathematical technique that transforms a quantity of correlated variables 
into a number of uncorrelated linear variables called PCs [13]. In this analysis, the PCA 
method was implemented based on covariance matrix to ASTER (VNIR + SWIR bands) 
and WV-3 (VNIR bands) for identifying hydrothermal alteration mineral assemblages in 
the study area. Table 1A,B shows the eigenvector matrix for the selected bands of the re-
mote sensing datasets. 

Table 1. Eigenvector matrix derived from PCA for the selected bands of the remote sensing datasets used in this study. 
(A) ASTER bands (VNIR + SWIR); (B) WV-3 band (1 to 8 VNIR). 

(A) Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9 
PCA 1 0.306376 0.354156 0.357999 0.373947 0.327957 0.351186 0.312760 0.294817 0.311584 
PCA 2 −0.506185 −0.503027 −0.377710 0.175856 0.271555 0.270302 0.240492 0.247816 0.226041 
PCA 3 −0.277958 −0.020633 0.232513 0.555288 0.118013 0.231883 −0.218093 −0.635404 −0.202253 
PCA 4 −0.123343 −0.657125 −0.626671 0.626671 0.219378 0.135436 −0.037673 −0.233067 −0.106928 
PCA 5 −0.005336 −0.013068 −0.049688 0.544534 −0.082811 −0.437342 0.180406 0.400661 −0.556429 
PCA 6 0.269821 −0.516554 0.233199 0.285564 −0.309355 −0.365753 0.067872 −0.145724 0.518769 
PCA 7 −0.209453 0.529334 −0.464617 0.294560 −0.485018 −0.017691 −0.005474 −0.049871 0.367733 
PCA 8 0.027679 −0.039707 0.000725 0.469109 0.336338 −0.003040 −0.870266 0.409042 0.160571 
PCA 9 0.152864 −0.239013 0.098348 0.029191 −0.632661 0.637281 −0.028538 0.205046 −0.244409 
(B) Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

PCA 1 −0.314986 −0.330951 −0.348156 −0.359256 −0.364601 −0.367182 −0.369097 −0.370119 
PCA 2 0.655926 0.454510 0.183457 −0.046042 −0.154854 −0.251952 −0.320189 −0.370709 
PCA 3 −0.331273 −0.598506 0.354295 −0.129646 0.661001 −0.220796 0.341420 0.108973 
PCA 4 −0.244961 0.345377 0.145561 0.631659 0.012267 0.368220 −0.509311 −0.142316 
PCA 5 −0.384633 0.279151 0.433976 −0.092808 0.081588 −0.370014 −0.142544 0.187618 
PCA 6 0.236442 −0.427799 −0.515988 −0.065670 0.646312 0.248715 0.043257 0.095274 
PCA 7 0.257771 −0.301701 −0.070317 −0.389055 0.471694 0.225588 −0.427691 0.035215 
PCA 8 0.174655 −0.560947 0.307690 −0.163685 −0.332755 0.108819 0.068151 −0.001993 

3.2.2. Fuzzy Logic Modeling 
Fuzzy logic modeling was proposed by Zadeh [14]. It is a form of many-valued logic 

in which the truth values of variables can be any real number between 0 and 1, inclusive 
[15]. A fuzzy set A is a set of ordered pairs: 𝐴 =  𝑥, µ 𝑥  | 𝑥 ϵ 𝑋  (1)

where μA (x) is the membership function or membership grade of x in A. μA (x) maps x to 
the membership space (M), where M contains only the two points 0 and 1. The range of 
μA (x) is [0, 1], where zero expresses non-membership and one expresses full membership 
[14]. A set of fuzzy membership values is stated in a continuous series from 0 to 1. 

3.2.3. Fieldwork Data and Laboratory Analysis 
GPS survey, X-ray diffraction (XRD) analysis, and Analytical Spectral Devices (ASD) 

spectroscopy were carried out in the study area and performed on the samples collected 
from the main lithological units exposed, respectively. 

4. Results and Discussion 
The PCA technique was also implemented on the spatial selected subset of ASTER 

for mapping alteration minerals. The eigenvector matrix for ASTER VNIR + SWIR bands 
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is shown in Table 1A. The PC3 has 0.555288 loading in band 4 and −0.635404 loading in 
band 8. The chlorites and carbonate show high reflectance at about 1.6 μm (band 4 of AS-
TER), while showing absorption features at 2.350 μm (band 8 of ASTER) [16,17]. There-
fore, the PC3 is considered here as a thematic layer. The PC4 has −0.657125 loadings in 
band 2 and 0.626671 loadings in band 4 (Table 1A). Iron oxide/hydroxide minerals are 
illustrated by strong absorption at 0.40 to 1.10 μm and reflection at about 1.60 μm [18]. 
Seeing the spectral location of bands 2 and 4 of ASTER, it can be seen that the PC4 image 
can be considered as a thematic layer. PC5 shows 0.544534 loading in band 4, −0.437342 
loading in band 6, and −0.556429 loading in band 9 (Table 1A). The sulfate minerals display 
absorption features at 2.20 to 2.50 μm (Clark, 1999), corresponding to bands 6 to 9 of ASTER. 
Consequently, sulfate minerals can be mapped in the PC5 image as a thematic layer. Car-
bonate minerals have diagnostic CO3 spectral absorptions near 2.35 μm, which can be sig-
nificantly used to identify carbonate-bearing rocks [19]. The carbonate minerals such as cal-
cite and dolomite show distinctive narrow absorption features around 2.35 μm analogous 
to band 8 (2.295–2.365 μm) of ASTER data (Mars and Rowan, 2010). Thus, the PC8 image 
has information related to the spatial distribution of dolomite. PC8 has 0.469109 loading in 
band 4 and 0.336338 loading band 5, in addition to 0.870266 loading in band 7 (Table 1A). 
The PC8 image was also considered as a thematic layer. 

The PCA statistical results for the WV-3 bands indicates that PC3, PC4, and PC6 can 
be considered as thematic layers for mapping iron-stained alteration, dolomite/Fe2+, and 
Fe3+ oxides, respectively. The PC3 has −0.598506 loading in band 2 and 0.661001 loading 
in band 5 (Table 1B) for mapping iron-stained alteration. PC4 shows 0.345377 loading in 
band 2 and 0.631659 loading in band 4 as well as −0.509311 loading in band 7 (Table 1B) 
for the identification of dolomite/Fe2+. PC6 contains −0.427799 in band 2 and −0.515988 
loading band 3, as well as 0.646312 loading in band 5 (Table 1B) for mapping Fe3+ oxides. 

Mineral prospectivity maps were produced from alteration thematic layers using a 
fuzzy-logic model (Table 2). The alteration thematic layers of ASTER were integrated us-
ing the fuzzy gamma operator (γ = 0.6) (Table 2). The ASTER prospectivity map shows 
the high value (0.7 to 1.0) of the favorability index as prospective zones (Figure 2). How-
ever, the highest value (0.9 to 1.0) of the favorability index can be considered as the high 
prospective zones for Pb-Zn mineralizations, which overlap with documented Pb-Zn oc-
currences alongside fault systems (Figure 2). 

 
Figure 2. Mineral prospectivity map derived from selected ASTER alteration thematic layers. 
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Figure 3 shows the prospectivity map derived from the alteration thematic layers of 
WV-3 data. The fuzzy AND operator was implemented to fuse the selected alteration the-
matic layers (Table 2). The highest value (0.8 to 1.0) of the favorability index was obtained 
for few parts, and a high value (0.6 to 0.9) of the favorability index was obtained in some 
parts of the study area. The Pb-Zn mineralization zones contain a high favorability index 
value (0.6 to 1.0) and also connect to fault systems at the local scale (Figure 3). Accordingly, 
the most favorable/prospective zones for Pb-Zn mineralization in the study area are in 
fault contact zones with impermeable lithological units. 

Argillic alteration, sericitic zones, iron oxides, and dolomitization were during field-
work. Several surface expressions of hematite, malachite, pyrite, galena, and sphalerite 
were observed. The surface expression of Pb-Zn mineralization was typically detected in 
the fault contact of dolomite with other lithological units in several parts of the study area. 
The XRD analysis revealed the presence of quartz, dolomite, calcite, muscovite, chlorite, 
gypsum, albite, illite, jarosite, and malachite. The ASD analysis for shale, gypsum, dolo-
mite, and calcite was measured, and shows some typical absorption features about 1.40 μm 
attributed to OH/H2O stretching, 1.90 μm related to H2O stretching, 2.20 μm due to the 
combination of the OH-stretching fundamental with Al-OH bending mode (Al-rich phyl-
losilicates). The absorption feature near 2.20 μm is related to the S-O bending mode and 
there are absorption features related to Fe2+ at 0.9 to 1.2 μm and CO3 at 2.35 μm. 

Table 2. Fuzzification parameters for the thematic layers. 

Fuzzy Operator Membership Type Detection Input Layer Data Origin 

Gamma 
(γ = 0.6) 

Linear 
Iron oxide/hydroxide minerals PC4 

ASTER Dataset OH/S-O/CO3-bearing minerals PC5 
Dolomite PC8 

AND Linear 
All iron oxides PC3 

WorldView-3 Dataset Dolomite/Fe2+ oxides PC4 
Fe3+ oxides PC6 

 
Figure 3. Mineral prospectivity map derived from selected WV-3 alteration thematic layers. 
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5. Conclusions 
ASTER and WV-3 were processed to generate mineral prospectivity maps for the CIT 

area. The PC3, PC4, PC5, and PC8 of ASTER mapping the spatial distribution of Mg-Fe-
OH/CO3 minerals, iron oxide/hydroxides, OH/S-O/CO3-bearing minerals, and dolomiti-
zation were considered as thematic layers. The PC3, PC4 and PC6 images of WV-3 identi-
fying iron-stained alteration, dolomite/Fe2+, and Fe3+oxides were considered as thematic 
layers. The fuzzy-logic model was used to produce mineral prospectivity maps using al-
teration thematic layers, including the PC4, PC5, and PC8 layers of ASTER and PC3, PC4, 
and PC6 thematic layers of WV-3. As a result, the most favorable/prospective zones for 
Pb-Zn mineralization in the study area were identified, and can be considered for future 
exploration field campaigns. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 
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