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Abstract: The kinetic population balance model (PBM) is widely used to predict the particle size 
distributions of grinding products. However, the model may not be solved if the rate of particle 
accelerates or decelerates in the mill hold-up, i.e., non-first-order breakage. This study presents a 
computational algorithm coupled with a pseudo-matrix model to simulate the product size distri-
butions (PSDs) of successive breakage events at grinding. The algorithm’s applicability and accu-
racy were validated against PSDs taken from different grinding equipment. The advantages of the 
algorithm are as follows—(i) time can be implicitly or explicitly added to the algorithm. (ii) The 
parameters required to run the algorithm are quite few. (iii) The proposed algorithm can predict 
PSDs in the normal or abnormal breakage region. Even a short-time grinding test will be sufficient 
to estimate the parameters if abnormal breakage effects are reduced or eliminated. (iv) The algo-
rithm can work with arbitrary sets of parameters that are irrelevant to the mill feed and mill type. 
Also, the algorithm’s framework shows that grinding is not a chaotic process; yet it may be due to 
the surface/gravitational attraction forces between particles and grinding media.  
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forces 
 

1. Introduction 
The kinetic population balance model (PBM) is used to predict the progeny size dis-

tribution of particles comminuted in size-reduction equipment [1–5]. It based upon the 
fundamental size–mass balance, which can be expanded in the following integrodifferen-
tial equation to describe the accumulation (or depletion) of particles of different sizes by 
breakage:         ( , ) = −𝑆(𝑥) ∗ 𝑚(𝑥, 𝑡) + 𝑆(𝑦) ∗ 𝑏(𝑥|𝑦) ∗ 𝑚(𝑦, 𝑡) ∗ 𝑑𝑦,   𝑦 𝑥  (1) 𝑆(𝑥) is the breakage rate (s-) of particles of size x, 𝑚(𝑥, 𝑡) is the mass fraction of par-
ticles of size x in the mill hold-up at time t, and 𝑏(𝑥|𝑦) is the breakage function, i.e., the 
mass fraction of particles of size y broken to size x at a single breakage event. Equation (1) 
treats the particle as a continuous variable, which can be further discretized for simpler 
computations: 

( ) = −𝑆 ∗ 𝑚 (𝑡) + ∑ 𝑆 ∗ 𝑏 ∗ 𝑚 (𝑡) , 𝑤ℎ𝑒𝑟𝑒 𝑁 ≥  𝑖 ≥  𝑗 ≥  1, 𝑏 = 0 (2) 𝑚 (𝑡) is the mass fraction of the size class i in the mill hold-up at time t, N is the total 
number of size fractions, Si is the breakage rate of the size class i, whereas 𝑏  is the break-
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age function, i.e., the mass fraction of the size class j broken into size class i. The discreti-
zation provides iterative matrix solutions [2] to Equation (2) as long as 𝑆  is constant, i.e., 
particles are broken at a constant rate (first-order breakage kinetics). However, rate of 
breakage is not constant (non-first-order breakage kinetics) particularly when (i) particles 
are too big (>1 mm) to be broken in the mill [2], or when (ii) there are multi-particle inter-
actions [6] such as cushioning or agglomeration of particles. In this case, Equation (2) can-
not be solved iteratively by using the matrix equations. Alternatively, some scaling (self-
similar) functions [7–12] can be used as the selection function to solve kinetic PBM, as long 
as the selected function describes the non-linear breakage kinetics [5,13,14]. All the above 
discussion indicates that the solution of the kinetic PBM gets complicated because of the 
uncertainties in the breakage rate.  

The size-discretized kinetic PBM (Equation (2)) can be rewritten without involving 
time if the size-reduction time is taken every minute. This new model (matrix PBM), can 
be expressed as a set of equations solved in a matrix form [1]. Each row of this matrix 
represents the size–mass balance around each size class:  𝑝 = 𝑏 ∙ 𝑅 ∙ 𝑓 + (1 − 𝑅 ) ∙ 𝑓  , 𝑤ℎ𝑒𝑟𝑒 𝑁 ≥  𝑖 ≥  𝑗 ≥  1, 𝑏 = 0 (3)𝑝  is the mass fraction of the size class i in the breakage product, 𝑅  is the mass frac-
tion of size i depleted at breakage, and 𝑓  is the mass fraction of the size class i in the feed. 
The model can be used to describe crushers [15–17] where the retention time of particles 
is very short. Although the matrix model was previously offered to describe grinding 
mills [18,19], this model can work only if grinding is oversimplified as a short-time event. 
On the other hand, given that grinding is formed by too many successive breakage events, 
it can be solved through an iterative solution of equations where each equation describes 
a successive breakage event on a different particle. This study presents a computational 
algorithm to iteratively solve such equations. Therefore, the algorithm can simulate suc-
cessive breakage events in size-reduction equipment, allowing us to predict the evolution 
of progeny size distribution. The algorithm iteratively selects the mean particle of a 
monosize fraction, whose mass is further distributed to its progenies through the corre-
sponding breakage distribution function. Each iterative calculation is actually the matrix 
PBM (Equation (3)) restricted to a breakage event of a single particle; therefore, each cal-
culation can be defined as a pseudo-matrix PBM. The overall algorithm is capable of 
demonstrating a realistic picture of size-reduction by taking account individual breakage 
events. The time can be incorporated to the algorithm either (i) implicitly as the number 
of breakage events or (b) explicitly if a proper function between grinding time and number 
of breakage events is known. However, the algorithm does not account for (i) useless ball–
ball or ball–particle impacts that do not produce breakage or (ii) the aggregation or ag-
glomeration of fine particles [20,21] occurring at fine grinding. The critical component of 
the algorithm is the iterative selection of particles, which is accomplished by using a prob-
abilistic number generator coupled with the Mersenne Twister algorithm [22]. This num-
ber generator is used to select particles either randomly or non-randomly for simulation.  

2. Materials and Methods  
Three narrow size fractions of the Portland cement clinker (−3.35 + 2.36 mm, −2.36 + 

1.7 mm, −1.7 + 1.18 mm), an artificial feed of −3.35 mm clinker following GGS distribution 
(distribution modulus = 0.27, size modulus = 3.35 mm), and a single size fraction (−3.35 + 
2.36 mm) of feldspar were used as the experimental material. The true densities of the 
feldspar (2.65 g/cm3) and clinker (3.19 g/cm3) were calculated by using water and helium 
pycnometer, respectively. Portland cement clinker samples were ground in a batch ball 
mill (19 × 18 cm) with 25.4 or 31.75 mm monosize steel balls at 56–58% of the mill speed. 
The feldspar sample was ground in a planetary ball with 12.7 mm balls operating at 300 
rpm. The experimental PSDs after grinding were recorded for different grinding times.  

The computational algorithm was executed and tested against any experimental PSD 
through the following flowsheet (Figure 1)—using the algorithm with a random or non-
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random selection procedure, a monosize fraction in the experimental feed size distribu-
tion (FSD) was selected. Then, the mass of the geometric mean of the selected size fraction 
was distributed to finer progeny fractions through an assigned breakage distribution 
function. Also, the mass of the selected particle was calculated assuming that it was a 
perfect sphere. The size distribution after the iteration was calculated, and then updated 
as the new FSD for the succeeding iteration. The iterations continued until the 80% passing 
size (d80) of the simulated product exceeded the d80 of the experimental product size dis-
tribution. The final PSD after the simulation was evaluated with the corresponding exper-
imental product size distribution. Also, the total number of iterations (the number of 
breakage events) was recorded to construct a time-explicit algorithm. All the computa-
tions were made by using the MATLAB software.  

 
Figure 1. The flowsheet for the execution and validation of the computational algorithm. 

Particle Selection Algorithm for Breakage 
The size fractions were selected for breakage either randomly or non-randomly by 

using a random number generator. For random selection, the generator used the 
Mersenne Twister algorithm [22] to produce a pseudorandom integer from a uniform dis-
tribution of the size fraction indices. The corresponding size fraction of the generated in-
dex was further selected for breakage. For non-random selection, the generator used the 
Mersenne Twister algorithm [22] coupled with a binary search tree algorithm for 
weighted sampling [23]. In this case, the index of a size fraction was selected with a prob-
ability provided in a vector whose elements corresponded to the selection probabilities of 
the indices of all monosize particles. Table 1 demonstrates the specific probability vectors 
tested for non-random selections in the simulator. The first vector in Table 1 reflects the 
relative abundance of size fractions in terms of the mass of the monosize fractions. How-
ever, the last two matrices were considered as empirical values. As the weight % of the 
size classes (yi in Table 2) may change after each iteration, the corresponding vectors that 
include yi were updated before each breakage event. 

Table 1. The description and formulation of probability vectors used at the simulation of non-random particle selection. 

Probability Vector Formulation Description of the Terms 

Mass 𝑦 / 𝑦  𝑦 : the weight % of the size class i in the mill feed (or 
new feed) before an iteration. 𝑑 : the geometric mean size of the monosize class i 

n: an empirical constant 
Power (P)    𝑑 / ∑ 𝑑    

Mass & Power (MP)    (𝑦 ∗  𝑑 )/ ∑  (𝑦 ∗  𝑑 )   
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Table 2. The range of ‘n’ values used in the simulation of particle simulation for predicting the experimental PSDs at a 
wide range of grinding time (0.5–16 min). Ball size in experimental tests = 25.4 mm. 

Feed Size Range of n [Minimum, Maximum] 
−3.35 + 2.36 mm [−4.9,−3.7] 
−2.36 + 1.7 mm [−4.3, −4.1] 
−1.7 + 1.18 mm [−3.9, −3.8] 

3. Results 
Figure 2 demonstrates the experimental PSDs of the −3.35 + 2.36 mm clinker ground 

in the ball mill, and the corresponding PSDs simulated with random or non-random par-
ticle selection with ‘mass’ probability vector. The breakage distribution functions of the 
monosize fractions of clinker were taken from the short-time grinding tests at the same 
milling conditions. The results show that neither random (Figure 2a) nor non-random par-
ticle selection with ‘mass’ vector (Figure 2b) can yield the experimental PSD of the sample 
ground. Meanwhile, Figure 3 presents the experimental PSDs of the −3.35 + 2.36 mm 
ground clinker, and the corresponding PSDs simulated with non-random selection 
through Power (P) and Mass and Power (MP) probability vectors. Although using the 
former cannot produce the experimental PSD (Figure 3a), using the latter can accurately 
simulate the experimental PSDs (Figure 3b). All the other experimental PSDs can be accu-
rately simulated with the ‘MP’ probability vector, but only some of them are presented 
for the sake of brevity. 

 
Figure 2. The experimental PSD of the −3.35 + 2.36 mm clinker ground in the ball mill, and the 
corresponding PSDs simulated with random (a) or non-random (b) particle selection with ‘mass’ 
probability vector. Ball size in experimental tests = 25.4 mm, the experimental grinding time = 16 min, n 
exponent in the ‘MP’ probability vector = −4.9. 
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Figure 3. The experimental PSDs of the −3.35 + 2.36 mm clinker ground in the ball mill for different 
times, and the corresponding PSDs simulated with non-random particle selection through Power 
(a) and Mass and Power (b) probability vectors. The simulated PSDs are shown with straight lines, 
while the experimental PSDs are shown with symbols. Ball size in experimental tests = 31.75 mm, 
n exponent in the ‘MP’ probability vector ranges between −4.0 and −3.5. 

Table 2 presents the range of ‘n’ exponents to construct ‘MP’ probability vectors for 
the accurate simulation of the experimental PSDs of clinker feeds of different size. The 
results show that the range of ‘n’ gets narrower as the feed size gets smaller.  

Figure 4 shows the experimental PSDs of the artificial feed of clinker (−3.35 mm), and 
the corresponding PSDs simulated with the ‘MP’ probability vector. Although each 
monosize fraction in the feed is simulated with ‘MP’ probability vector with a wide range 
of exponents (Table 1), the results show that a narrow range of exponents will be sufficient 
for the accurate prediction of the experimental PSDs of the artificial feed. 

 
Figure 4. The experimental PSDs of the artificial feed of clinker (−3.35 mm), and the corresponding 
PSDs simulated with the MP probability vector. The simulated PSDs are shown with straight lines, 
while the experimental PSDs are shown with symbols. Ball size in experimental tests = 25.4 mm, n 
exponent in the ‘MP’ probability vector ranges between −4.0 and −3.7. 
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Figure 5 shows the variation of the total number of iterations (number of successive 
breakage events) with the grinding time at some simulations conducted with ‘MP’ prob-
ability vectors. The results show that the number of successive breakage events can be 
well-fitted to a power function of the grinding time in the form of y = Axb. 

 
Figure 5. The total number of iterations vs. the experimental grinding time in ball milling. The 
simulations were conducted with ‘MP’ probability vectors. The dashed line represents the power 
function fitted to the data in the form of y = Axb. The experimental setup—ball size = 31.75 mm, 
mill feed = −3.35 + 2.36 mm clinker. 

Figure 6 shows the experimental PSDs of −3.35 + 2.36 mm feldspar sample ground 
with planetary ball mill, and the corresponding PSDs simulated with the MP probability 
vector. However, for these simulations, the breakage distribution functions of the feldspar 
sample were arbitrarily selected from the breakage distribution functions of monosize 
clinker samples ground in the batch ball mill with 31.75 mm balls. The results show the 
simulation is capable of accurately predicting the experimental PSDs with arbitrary sets 
of ‘n’ and breakage distribution functions.  

 
Figure 6. The experimental PSDs of the −3.35 + 2.36 mm feldspar ground in the planetary ball mill 
for different times, and the corresponding PSDs simulated with non-random particle selection 
through Mass and Power (b) probability vectors. The simulated PSDs are shown with straight 
lines, while the experimental PSDs are shown with symbols. Ball size in experimental tests = 12.7 
mm, n exponent in the ‘MP’ probability vector = −2.43. 

4. Discussion 
The results initially show that random selection of particles for breakage cannot yield 

the experimental PSD of the ground sample (Figure 2a). This strongly suggests that the 
observed chaotic motion of the mill hold-up cannot cause random breakage events inside 
the mill. Therefore, there should be a single or multiple phenomena causing the particles 
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to participate in the breakage events. As non-probability selection with a ‘mass’ probabil-
ity vector cannot produce the experimental PSD (Figure 2b), it is likely that particles are 
not selected for breakage with respect to their abundances in the mill-hold up. Given that 
the ‘power’ probability vector selects particles with respect to the power of their diame-
ters, the failure of the vector in the simulation (Figure 3a) suggests that the selection of 
particles cannot be attributed to their sizes. This eliminates the reason that the relative 
strength of particles, which is observed to be a function of the particle size [24,25], cannot 
be responsible for particles to participate in the breakage events. The simulation with the 
‘MP’ probability vector, on the other hand, can accurately produce a range of PSDs for 
different combinations of feed sample and grinding environment (Figures 3b, 4 and 6). In 
this non-random selection routine, particles are selected for breakage with a probability 
proportional to the total mass of near-size particles and an inverse power of its diameter. 
Such proportionalities are generally observed while estimating the gravitational [26] and 
surface [27,28] attraction forces between masses of objects. Therefore, the particles in the 
mill hold-up may be participating in the breakage events due to the attraction forces be-
tween particles and grinding media. However, as there is no current experimental evi-
dence to evaluate this speculation, the author encourages the audience to test the presence 
of such attraction forces by means of relevant sophisticated measurement techniques 
[26,27,29]. Meanwhile, the variation of ‘n’ with particle size (Table 1) may indicate some 
clues regarding the nature of such forces—in coarse feeds (+1 mm), the breakage events 
only occur at fine particles due to the abnormal breakage effect [2]. Then, the attraction 
between balls and fine particles may be dominated by the surface attraction, which is re-
flected with high values of ‘n’. On the other hand, as the feed size gets smaller or the mill 
environment becomes more disruptive, the abnormal breakage effect should disappear. 
In this case, as exemplified in Figure 6, the ‘n’ value approaches (-2)–(−2.5). Given that the 
length scale (−2) of the gravitational attraction is numerically close to this ‘n’ range, the 
author suspects that gravitational attraction are causing the breakage events when the 
abnormal breakage effect is reduced or eliminated. 

The abovementioned discussion suggests that a single exponent ‘n’ is sufficient for 
the simulation if the abnormal breakage effect [2] is reduced (Table 2). Even this exponent 
can be estimated by running the time-implicit simulation on a single experimental PSD of 
a short-time grinding test. The results also suggest some simplicity associated with the 
computation algorithm—firstly, the method can run with only two parameters, namely n 
and breakage distribution functions, which can be arbitrarily selected for different combi-
nations of feed and milling environment (Figure 6). Also, the time can be explicitly added 
to the algorithm if the number of successive breakage events can be expressed as a power 
function of grinding time (Figure 5). As the number of parameters in this function is equal 
to two, there should be two or more datasets of grinding time-total number of iterations 
for fitting purposes. Therefore, at least two experimental PSD curves should be simulated 
to construct a time-explicit algorithm.  

5. Conclusions 
This study presents a computational algorithm coupled with a pseudo-matrix model 

to simulate the product size distributions (PSDs) of different grinding mills. The algo-
rithm’s applicability and accuracy were validated against experimental PSDs from differ-
ent grinding equipment. The results show that the evolution of PSDs at grinding may be 
due to the surface/gravitational attraction forces.  

The algorithm is simple to construct, with few parameters. Even a short-time grind-
ing test will be sufficient to execute the time-implicit algorithm if abnormal breakage ef-
fects are reduced or eliminated. However, running the time-explicit algorithm requires 
the simulation and evaluation of two or more experimental PSDs. The algorithm can even 
work with arbitrary sets of parameters that are irrelevant to the mill feed and mill envi-
ronment. 



Environ. Sci. Proc. 2021, 6, 7 8 of 9 
 

 

Author Contributions: Conceptualization, M.C.; methodology, M.C.; software, M.C.; validation 
M.C.; formal analysis, M.C.; data curation, M.C.; writing—original draft preparation, M.C.; writ-
ing—review and editing, M.C. The author has read and agreed to the published version of the man-
uscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Acknowledgments: The author would like to thank Çetin Hoşten for the valuable communication. 

Conflicts of Interest: The authors declare no conflict of interest.  

References 
1. Gupta, A.; Yan, D.S. Mineral Processing Design and Operation; Elsevier: Amsterdam, The Netherlands, 2006. 
2. Austin, L.G.; Klimpel, R.R.; Luckie, P.T. Process Engineering of Size Reduction: Ball Milling; AIME: New York, NY, USA, 1984; 

ISBN 0895204215. 
3. Li, W. Exploring the Fundamentals of Impact Breakage Events in Grinding. Master’s Thesis, McGill University, Montreal, QC, 

Canada, 2005. 
4. King, R.P. Modeling and Simulation of Mineral Processing Systems; Butterworth-Heinmann Publications: Oxford, UK, 2001. 
5. Bilgili, E.; Scarlett, B. Population balance modeling of non-linear effects in milling processes. Powder Technol. 2005, 153, 59–71, 

doi:10.1016/j.powtec.2005.02.005. 
6. Bilgili, E. On the consequences of non-first-order breakage kinetics in comminution processes: Absence of self-similar size 

spectra. Part. Part. Syst. Charact. 2007, 24, 12–17, doi:10.1002/ppsc.200601043. 
7. Gupta, V.K.; Kapur, P.C. A Pseudo-Similarity Solution to the Integro-Differential Equation of Batch Grinding. Powder Technol. 

1975, 12, 175–178. 
8. Kapur, P.C. Self-preserving size spectra of comminuted particles. Chem. Eng. Sci. 1972, 27, 425–431. 
9. Peterson, T.W.; Scotto, M.V.; Sarofim, A.F. Comparison of Comminution Data with Analytical Solutions of the Fragmentation 

Equation. Powder Technol. 1985, 45, 87–93. 
10. Williams, M.M.R. An exact solution of the fragmentation equation. Aerosol Sci. Technol. 1990, 12, 538–546, 

doi:10.1080/02786829008959368. 
11. Brown, W.K. Comparison of a theory of sequential fragmentation with the initial mass function of stars. Astrophys. Space Sci. 

1986, 122, 287–298. 
12. Ziff, R.M. New solutions to the fragmentation equation. J. Phys. A Math. Gen. 1991, 24, 2821–2828. 
13. Rao, B.V.; Datta, A. Analysis of nonlinear batch grinding in stirred media mills using self-similarity solution. Powder Technol. 

2006, 169, 41–48, doi:10.1016/j.powtec.2006.07.020. 
14. Bilgili, E.; Yepes, J.; Scarlett, B. Formulation of a non-linear framework for population balance modeling of batch grinding: 

Beyond first-order kinetics. Chem. Eng. Sci. 2006, 61, 33–44, doi:10.1016/j.ces.2004.11.060. 
15. Anticoi, H.; Guasch, E.; Ahmad Hamid, S.; Oliva, J.; Alfonso, P.; Bascompta, M.; Sanmiquel, L.; Escobet, T.; Escobet, A.; Parcerisa, 

D.; et al. An Improved High-Pressure Roll Crusher Model for Tungsten and Tantalum Ores. Minerals 2018, 8, 483, 
doi:10.3390/min8110483. 

16. Nikolov, S. A performance model for impact crushers. Miner. Eng. 2002, 15, 715–721, doi:10.1016/S0892-6875(02)00174-7. 
17. Li, H. Discrete Element Method (DEM) Modelling of Rock Flow and Breakage within a Cone Crusher. Ph.D. Thesis, University 

of Nottingham, Nottingham, UK, 2013. 
18. Whiten, W.J. A matrix theory of comminution machines. Chem. Eng. Sci. 1974, 29, 589–599, doi:10.1016/0009-2509(74)80070-9. 
19. Weedon, D.M. A perfect mixing matrix model for ball mills. Miner. Eng. 2001, 14, 1225–1236, doi:10.1016/S0892-6875(01)00139-X. 
20. Opoczky, L. Fine Grinding and Agglomeration of Silicates. Powder Technol. 1977, 17, 1–7. 
21. Beke, B. The Process of Fine Grinding; Akademiai Kiado: The Hague, The Netherlands, 1981; ISBN 9789400982604. 
22. Matsumoto, M.; Nishimura, T. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number 

Generator. ACM Trans. Model. Comput. Simul. 1998, 8, 3–30, doi:10.1145/272991.272995. 
23. Wong, C.K.; Easton, M.C. An Efficient Method for Weighted Sampling without Replacement. SIAM J. Comput. 1980, 9, 111–113, 

doi:10.1137/0209009. 
24. Xu, Y.; Song, D.; Chu, F. Approach to the Weibull modulus based on fractal fragmentation of particles. Powder Technol. 2016, 

292, 99–107, doi:10.1016/j.powtec.2016.01.021. 
25. Tavares, L.M. Breakage of Single Particles: Quasi-Static. In Handbook of Powder Technology; Salman, A.D., Ghadiri, M., Hounslow, 

M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 12, pp. 3–68, ISBN 978-0-444-53080-6. 
26. Schmöle, J.; Dragosits, M.; Hepach, H.; Aspelmeyer, M. A micromechanical proof-of-principle experiment for measuring the 

gravitational force of milligram masses. Class. Quantum Gravity 2016, 33, doi:10.1088/0264-9381/33/12/125031. 
27. Israelachvili, J.N. Intermolecular and Surface Forces; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9788578110796. 



Environ. Sci. Proc. 2021, 6, 7 9 of 9 
 

 

28. Leite, F.L.; Bueno, C.C.; Da Róz, A.L.; Ziemath, E.C.; Oliveira, O.N. Theoretical models for surface forces and adhesion and their 
measurement using atomic force microscopy. Int. J. Mol. Sci. 2012, 13, 12773–12856, doi:10.3390/ijms131012773. 

29. Speake, C.; Quinn, T. The search for Newton’s constant. Phys. Today 2014, 67, 27–33, doi:10.1063/PT.3.2447. 
 


