
 
 

 

 
Environ. Sci. Proc. 2021, 3, 57. https://doi.org/10.3390/IECF2020-07956 www.mdpi.com/journal/environsciproc 

Proceeding Paper 

Long-Term Sensitivity Analysis of Palmer Drought Severity  
Index (PDSI) through Uncertainty and Error Estimation from 
Plant Productivity and Biophysical Parameters † 

Subhasis Ghosh 1,*, Subhajit Bandopadhyay 2,* and Dany A. Cotrina Sánchez 3 

1 Department of Geography, Visva-Bharati University, Santiniketan 731235, India 
2 Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piatkowska 94, 

60–649 Poznan, Poland 
3 Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES),  

Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; alexan-
der.cotrina@untrm.edu.pe 

* Correspondence: mail.subhasis@yahoo.com (S.G.); subhajit.bandopadhyay@up.poznan.pl (S.B.) 
† Presented at the 1st International Electronic Conference on Forests—Forests for a Better Future: Sustainabil-

ity, Innovation, Interdisciplinarity, 15–30 November 2020; Available online: https://iecf2020.sciforum.net. 

Abstract: Palmer Drought Severity Index (PDSI) is the most effective and well-acknowledged 
drought severity index that particularly determines the long-term drought conditions over the 
forest and other terrestrial ecosystems. However, the sensitivity of PDSI has not been explored yet 
based on productivity (i.e., Gross Primary Productivity (GPP)), biophysical parameters (i.e., bio-
mass—Leaf Area Index (LAI) and Enhanced Vegetation Index (EVI) and greenness con-
tent—Normalized Difference Vegetation Index (NDVI)), and absorbed solar radiation by plants 
(i.e., fraction of Absorbed Solar Radiation (fAPAR)) over a humid-subtropical forest ecosystem. In 
this study, the sensitivity of the PDSI was analyzed through uncertainty and error estimation 
modeling from long-term (2015–2019) MODIS GPP and reflectance data using Google Earth Engine 
(GEE) over a humid-subtropical forest region of Arunachal Pradesh, India. It was experimentally 
observed that EVI was the most sensitive parameter to the PDSI in long-run observation based on a 
low uncertainty (2.39–3.01%) and error (0.07–0.12) compared to the other parameters. Besides, EVI 
had a strong agreement with PDSI compared to GPP, NDVI, LAI, and fAPAR, where the Pearson’s 
r ranged from −0.87 to −0.63, except 2015. Hence, it is stated that EVI is the simple, effective, and 
most complementary indicator for assessing the PDSI over the forest regions of a tropical ecosys-
tem. This study showed that EVI might be a promising tool for effectively evaluating long-term 
drought impacts on the forest ecosystem that indicates the actual water deficit-induced stress con-
ditions. 

Keywords: Palmer Drought Severity Index; Enhanced Vegetation Index; forest; tropical ecosystem; 
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1. Introduction 
Drought is the dryness condition of the environment that creates ecological stress 

due to lack of precipitation and shortages in water supply for plant growth. The Palmer 
Drought Severity Index (PDSI) [1] is one of the most effective, well-acknowledged, and 
widely used drought severity index that particularly determines the long-term drought 
conditions over the forest and other terrestrial ecosystems. 

The PDSI is based on the demand and supply concept of the water balance model, 
taking consideration not only precipitation deficit but also includes local temperature 
and soil moisture anomalies to assess relative dryness [2]. Several studies were already 

Citation: Ghosh, S.; Bandopadhyay, 

S.; Cotrina Sánchez, D.A. Long-Term 

Sensitivity Analysis of Palmer 

Drought Severity Index (PDSI) 

Through Uncertainty and Error 

Estimation from Plant Productivity 

and Biophysical Parameters. Environ. 

Sci. Proc. 2021, 3, 57. https://doi.org/ 

10.3390/IECF2020-07956 

Academic Editors: Angela Lo  

Monaco, Cate Macinnis-Ng and  

Om P. Rajora 

Published: 12 November 2020 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2020 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 



Environ. Sci. Proc. 2021, 3, 57 2 of 10 
 

 

conducted on the application of the PDSI; however, the sensitivity of the PDSI has not 
been explored yet based on productivity (i.e., Gross Primary Productivity or GPP), bio-
physical parameters (i.e., biomass—Leaf Area Index or LAI and Enhanced Vegetation 
Index or EVI and greenness content—Normalized Difference Vegetation Index or NDVI), 
and absorbed solar radiation by the plants (i.e., fraction of Absorbed Solar Radiation or 
fAPAR) over a humid-subtropical forest ecosystem. It was also observed that most of the 
existing literatures on drought severity preferred to use productivity, net photosynthesis 
(Gross Primary Productivity and Net Primary Productivity) [3–12], or NDVI or 
near-infrared (NIR) based vegetation indices [13–19] for long-term drought condition 
assessments. Hence, a true sensitivity analysis of all important vegetation parameters like 
GPP, NDVI, EVI, LAI, and fAPAR was necessary to find out the most complimentary and 
effective PDSI indicator that shows the actual water deficit-induced stress conditions over the 
vegetative areas of a subtropical humid ecosystem. In this study, the sensitivity of PDSI was 
analyzed through uncertainty and error estimation modeling from long-term (2015–2019) 
MODIS GPP and other reflectance products (NDVI, EVI, and LAI) and fAPAR using the 
open-source cloud-computing platform Google Earth Engine (GEE). 

2. Study Area 
The study was carried out over the humid-subtropical forest region of Arunachal 

Pradesh, India, the Indian state that is enriched with the second-largest forest cover 
spreading over 79.63% of the total geographical area of the state [20] (Figure 1). This 
north-eastern state lies at the Eastern Himalayan region of the country coordinated be-
tween 26°28′ N to 29°30′ N latitude and 91°30′ E to 97°30′ E longitude and shares inter-
national boundaries with Bhutan in the west, China to the north and northeast, and 
Myanmar to the east. The climate varies from temperate in the northern part and warm 
humid in the southern part, having annual rainfall ranging between 2000 mm to 8000 mm 
and annual temperatures from <0 °C to 31 °C [20]. 

 
Figure 1. The forest cover map of Arunachal Pradesh, India (Source: India State of Forest Report 2019, Forest Survey of 
India, Ministry of Environment, Forest & Climate Change, Govt. of India). 
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3. Materials and Methods 
3.1. Dataset 

The monthly PDSI data (2015–2019) used in this study was obtained from Terra-
Climate products that provide monthly climate and climatic water balances for global 
terrestrial surfaces developed by the University of Idaho, USA [21]. Similarly, long-term 
(2015–2019) GPP products (MOD17) were obtained from a Moderate Resolution Imaging 
Spectroradiometer (MODIS) Terra sensor with the temporal resolution of 8 days. Other 
required vegetation parameters such as NDVI (MOD13Q1), EVI (MOD13Q1), LAI 
(MOD15A2H), and fAPAR (MOD15A2H) were also collected from the MODIS Terra 
sensor with the temporal resolutions of 16 days and 8 days respectively. The mean 
monthly products of GPP, NDVI, EVI, LAI, and fAPAR were developed through cloud 
computing using the GEE platform. 

3.2. Methodology 
3.2.1. Development of PDSI 

PDSI was developed by Palmer in 1965 and uses readily available temperature and 
precipitation data, as well as the locally available water content of the soil, to estimate the 
relative dryness. The step-wise retrieval of PDSI was discussed by Palmer, 1965 [1]. It is a 
standardized drought index that spans −4 (extremely dry) to +4 (extremely wet). It has 
been reasonably successful at quantifying long-term drought, as it uses local temperature 
and rainfall data and a physical water balance model for estimation. It can also capture 
the basic effect of global warming on drought through changes in potential evapotran-
spiration. Monthly PDSI values do not capture droughts on time scales less than about 12 
months. 

3.2.2. Development of Vegetation Parameters 
The sensitivity of the five most commonly used vegetation parameters (i.e., GPP, 

NDVI, EVI, LAI, and fAPAR) was tested with PDSI to understand the most sensitive 
parameter in reference to PDSI for the long term under tropical or humid-subtropical 
climatic contexts. GPP is the rate at which chemical energy (typically expressed as carbon 
biomass or organic substances) is created by primary producers through capturing solar 
energy in a given unit of area and time during photosynthesis. GPP is considered as a 
very useful indicator of drought conditions in terms of productivity, as reported by sev-
eral studies that were mentioned before. LAI and EVI both indicate the biomass condi-
tion of vegetations. However, LAI (LAI = leaf area/ground area, m2/m2) typically charac-
terizes plant canopies, whereas EVI is highly responsive to plant physiognomy. EVI also 
indicates the water balance and atmospheric droughts of leaves that are the major 
eco-physiological parts of a plant that interact with the atmosphere. The formula used for 
computing EVI is 𝐸𝑉𝐼 = 𝐺 × (𝑁𝐼𝑅 − 𝑅𝐸𝐷)(𝑁𝐼𝑅 + 𝐶1 × 𝑅𝐸𝐷 − 𝐶2 × 𝐵𝐿𝑈𝐸 + 𝐿) (1)

where NIR/red/blue are atmospherically corrected or partially atmosphere corrected 
(Rayleigh and ozone absorption) surface reflectance, L is the canopy background ad-
justment that addresses nonlinear, differential NIR and red radiant transfer through a 
canopy, and C1 and C2 are the coefficients of the aerosol resistance term, which uses the 
blue band to correct for aerosol influences in the red band. The coefficients adopted in the 
MODIS-EVI algorithm are; L=1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5. The NDVI 
(𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝐸𝐷/𝑁𝐼𝑅 + 𝑅𝐸𝐷) is a widely used greenness (chlorophyll content) indi-
cator of vegetation, which is often used to assess the water deficit-induced stress levels in 
plants. Lastly, fAPAR is one of the essential climate variables recognized by the UN 
Global Climate Observing System (GCOS) that has great potential to monitor and assess 
drought impacts on vegetation. fAPAR monitors the greenness and health of vegetation 
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by quantifying the fraction of the solar radiation absorbed by alive leaves for the photo-
synthesis activity. 

3.2.3. Data Conversion 
As the obtained data varied in terms of their temporal resolutions, data standardi-

zation was very much necessary for any kind of further analysis. “Naive” method of 
conversion [22] was used to convert the NDVI, EVI, LAI, and fAPAR data into their av-
erage monthly values that facilitated comparability with the monthly PDSI information. 

3.2.4. Statistical Measurements 
Sensitivities of all five vegetation parameters were measured individually in respect 

to PDSI using three different statistical methods: (1) agreement between parameters us-
ing Pearson’s r, (2) error estimation between parameters, and (3) uncertainty estimation 
through Root Mean Squared Error (RMSE). Pearson’s r showed the relationship between 
the response variable (i.e., vegetation parameters) and the explanatory variable (i.e., 
PDSI) and helped to understand the agreement between response and explanatory var-
iables ranging between -1 (negative agreement) to +1 (positive agreement). Standard Er-
ror of the estimate (SEE) derived from Pearson’s simple linear regression analysis was 
used for error estimation between the PDSI and the other vegetation parameters, as this 
statistic allows to construct a confidence interval within which the true population cor-
relation will fall [23]. Hence, smaller values indicate better sensitivity. Lastly, the Root 
Mean Squared Error (RMSE) was used to assess the standard deviation of the prediction 
errors and to measure the uncertainty between variables. The lower values of RMSE in-
dicated the low uncertainty between variables and vice versa. Open-source computing (R 
studio, version: 3.6.1) was used for statistical calculations. 

4. Result and Discussion 
4.1. Interpretation of Pearson’s Correlation Analysis 

Figure 2 shows the spatiotemporal distribution of PDSI on the study region over 
time (2015–2019). 

In Pearson’s correlation analysis (Figure 3), EVI showed as the most promising in-
dicator in the long-term agreement between vegetation parameters and PDSI. Pearson r 
values for EVI was the highest negatively correlated parameter, with the PDSI ranging 
between −0.63 to −0.87 over the years (except 2015) in comparison to NDVI, GPP, LAI, 
and fAPAR. In 2015, EVI showed a surprisingly higher positive correlation with PDSI 
(0.50), which could be the result of the massive rainfall situation that hit the state of 
Arunachal Pradesh during that year [24]. Such a huge amount of rainfall effectively re-
charged the soil layers, which helped the forest region to overcome the water deficit 
conditions. 

After EVI, the other vegetation parameters, i.e., LAI, NDVI, GPP, and fAPAR, re-
spectively, were found to have high negative agreement with the PDSI. 
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Figure 2. Temporal distribution (2015–2019) of the Palmer Drought Severity Index (PDSI) over Arunachal Pradesh, India. 
PDSI value −4 represents the dry conditions, and +4 represents the wet conditions. 

 
(a) 
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(d) 

 
(e) 

Figure 3. Correlation of the vegetation parameters with the PDSI in the years 2015 (a), 2016 (b), 2017 (c), 2018 (d), and 2019 
(e). Significance codes 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘·’ 0.1 ‘ ’ 1. 

4.2. Interpretation of Error Estimation Analysis 
The following table (Table 1) shows the calculated standard error values between 

the PDSI and vegetation parameters during 2015–2019 that were under consideration. 
The results showed that the estimated errors ranged from 70.10 to 105.98 between GPP 
and PDSI, 11.23 to 18.01 between LAI and PDSI, 9.07 to 18.11 between fAPAR and PDSI, 
0.18 to 0.26 between NDVI and PDSI, and 0.07 to 0.12 between EVI and PDSI. EVI con-
tinuously managed to show the least estimated standard error values for all five years, 
clearly indicating the highest level of long-term sensitivity compared to the other pa-
rameters. The low error values between EVI and PDSI showed the most accurate negative 
agreement in all five years and, also, better represented the sensitivity compared to the 
NDVI, LAI, GPP, and fAPAR. 
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Table 1. Calculated Standard Error of the Estimate between the Palmer Drought Severity Index (PDSI) and other vegeta-
tion parameters. GPP: Gross Primary Productivity, LAI: Leaf Area Index, fAPAR: fraction of absorbed Solar Radiation, 
NDVI Normalized Difference Vegetation Index, and EVI: Enhanced Vegetation Index. 

YEAR PDSI-GPP PDSI-LAI PDSI-fAPAR PDSI-NDVI PDSI-EVI 
2019 70.10047 11.23408 16.35537 0.22529 0.07128 
2018 85.00281 14.707568 14.64304 0.26018 0.07962 
2017 84.30856 14.99181 9.07160 0.18792 0.12114 
2016 105.98472 18.01153 18.11280 0.21312 0.07426 
2015 97.12000 12.47910 16.85542 0.21665 0.11117 

4.3. Interpretation of Uncertainty Analysis 
Both the EVI and NDVI showed the least uncertainties compared to the other vege-

tation parameters in respect to the PDSI for all five years (Figure 4). The RMSE values for 
both NDVI and EVI were found to range from 2.39% to 3.01% during 2015–2018, which 
is, overall, the lowest among the others. However, in 2019, the NDVI showed slightly 
lesser RMSE values than EVI, but in that year, it was fAPAR that actually showed the 
optimum sensitive condition to the PDSI with a RMSE of 1.89%. Overall, the estimated 
uncertainties (RMSE) between the PDSI and EVI and and PDSI and NDVI were found to 
be 1% to 2% lower compared to the others, showing better sensitivity than the other four 
vegetation parameters in a long-term context. 

 
Figure 4. Uncertainty analysis (Root Mean Squared Error (RMSE)) of the vegetation parameters 
with the PDSI. GPP: Gross Primary Productivity, LAI: Leaf Area Index, fAPAR: fraction of ab-
sorbed Solar Radiation, NDVI Normalized Difference Vegetation Index, and EVI: Enhanced Vege-
tation Index. 

4.4. Sensitivity Ranking for the PDSI 
In compilation of the overall statistical analyses, such as agreement, error estimation, 

and uncertainty analysis, it was found that the EVI, which indicates the biomass of veg-
etation while ignoring the soil background and atmospheric effects, showed the most 
promising result in terms of long-term sensitivity to the PDSI in all five years (Table 2). 
However, it was also observed that the NDVI (greenness indicator) showed an overall 
similar result to the EVI in the uncertainty analysis and gave values very near to the EVI 
in the error estimation analysis. Though the NDVI could not outperform the EVI in the 
overall context, its sensitivity remained pretty impressive throughout the analyses, 
making NDVI the second-most sensitive vegetation parameter after the EVI, according to 
the study. Table 2 shows the best performances of vegetation parameters in all three sta-
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tistical analyses. Detailed results of the three statistical analyses are provided in the Ap-
pendix (See Table A1 of Appendix A). 

Table 2. Compilation of the outcomes of the correlation, error estimation, and uncertainty analysis. 

Analysis Overall Most Sensitive Parameters 
Pearson’s Correlation EVI 

Error Estimation EVI 
Uncertainty NDVI, EVI 

5. Conclusions 
Based on the long-term analysis from this experimental study over the subtropical 

forest region of the Arunachal Pradesh state of India, it was observed that the EVI was 
the most sensitive parameter to the PDSI in a long-term observation based on promising 
correlation, low uncertainty, and low error, where most of the existing studies on 
drought severity showed a high sensitivity of GPP and NDVI in determining drought 
conditions. It is, therefore, stated that the EVI is the simple, effective, and most comple-
mentary indicator (among the vegetation parameters) for assessing the PDSI over forest 
regions of a tropical ecosystem. Besides, the EVI can also be used as a promising tool for 
the effective evaluation of long-term drought impacts on a forest ecosystem that indicates 
actual water deficit-induced stress conditions. In other words, the EVI can also act as a 
direct proxy of the actual drought conditions of the region. Similarly, after the EVI, the 
NDVI can be considered as the next promising sensitive indicator that is highly respon-
sive to the PDSI. In future studies, more advanced vegetation parameters like 
Sun-induced fluorescence or SIF [25] can be added for PDSI-based drought monitoring. 
The authors assumed that this study will support sustainable forest management prac-
tices and drought monitoring under climate change scenarios for tropical ecosystems. 
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Appendix A 

Table A1. Statistical outcomes of 2015–2019. 

Parameters 
2015 2016 2017 2018 2019 

r SEE RMSE (%) r SEE RMSE (%) r SEE RMSE (%) r SEE RMSE (%) r SEE RMSE (%) 
GPP −0.86 97.12 4.73 −0.74 105.98 4.55 −0.85 84.3 4.89 −0.05 85 3.95 −0.64 70.1 3.86 
LAI −0.74 12.47 3.45 −0.74 18.01 3.09 −0.84 14.99 3.23 −0.38 14.7 2.79 −0.4 11.23 1.89 

fAPAR −0.91 16.85 3.7 −0.72 18.11 3.31 −0.98 9.07 3.56 0.48 14.64 3.09 −0.36 16.35 1.89 
NDVI −0.93 0.21 3.01 −0.71 0.21 2.63 −0.94 0.18 2.82 0.11 0.26 2.39 0.066 0.22 2.32 

EVI 0.5 0.11 3.01 −0.87 0.07 2.63 −0.68 0.12 2.82 −0.81 0.07 2.39 −0.63 0.07 2.58 
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