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Abstract: Spotting is an important fire spread mechanism and cause of fireline breaches, yet current 
models provide only coarse metrics of spotting behavior that are underutilized in fire operations. 
We developed a spatial framework to quantify and map potential sources and sinks of spot fire 
transmission across control lines, based on models of ember production, ember transport, and re-
ceiving fuel bed ignition probability. The framework provides several spatially explicit measures of 
spotting potential (SP), conditional on fire extent and weather, that are designed to inform control 
line selection and resource allocation to tasks such as line prep, retardant application, and holding 
operations. We evaluated the utility of SP using two wildfire case studies with growth episodes 
attributed to spotting. SP captured the general trends in spotting behavior from these wind-driven 
fires. In its current form, SP may be useful for relative evaluation of control lines, and to help man-
agers think prescriptively about the control tactics necessary on both the source and receiving sides 
of control lines to avoid spotting breaches. Future research priorities are refining the component 
models and empirical calibration of SP to spotting probability. 
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1. Introduction 
Spotting complicates fire containment and threatens the safety of suppression per-

sonnel and the public. Fire containment models that focus on interrupting surface fire 
spread with fireline construction have limited utility for suppression planning because 
they do not consider spotting or related suppression tasks. Spotting decreases contain-
ment probability, but the magnitude of this effect and the factors that influence it have 
not been systematically quantified in many environments [1–5]. Spotting processes are 
represented in simulation models used to predict fire spread, arrival times, and burn 
probability [6–8], but there are no equivalent models to quantify conditional metrics of 
spot fire transmission potential across control lines. We also lack tools to inform resource 
allocation to suppression tasks aimed at reducing spotting, such as vegetation clearing, 
suppression firing, or mop up to decrease ember production; prophylactic application of 
fire retardant to reduce fire intensity and ignition probability; and holding operations to 
contain spot fires. 

Fire containment models have either assumed all constructed firelines will hold (e.g., 
[9]) or that containment probability increases with control line width and decreases with 
fire intensity [10]. The latter is attractive because of its ability to estimate the resource 
needs to construct firelines with a desired level of reliability [11]. Wilson’s [2] firebreak 
experiments validate that this framework is appropriate for surface fire, but also show 
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that containment probability decreases in the presence of spotting prone vegetation. The 
risk of spotting is mitigated during fire operations with a variety of tactics, including fuel 
reduction, retardant and water application, burnout, mop-up, holding with hand or en-
gine crews, spot fire patrol, and containment with ground or aerial resources. Albini’s [6] 
vision that his model would be used to inform these actions has yet to be fully realized. 
Describing the magnitude and spatial distribution of spotting potential (SP) is a logical 
starting point to inform fire management decisions; for example, fireline segments with 
high transmission potential could be avoided in planning or targeted for mitigation, em-
ber source mapping could inform the depth of necessary fuel reduction, and areas with 
high receiving potential could be prioritized for patrol. 

Beyond the empirical model of Wilson [2], we have limited understanding of how 
spotting influences containment probability. Landscape-scale evaluation of control poten-
tial based on statistical associations of historical fire perimeters with environmental fac-
tors is gaining popularity [12,13], but spread mechanisms have not been explicitly ad-
dressed in this research. Spotting is modeled in fire simulation systems used to inform 
incident management, such as FARSITE [7] and FSPro [8], but their stochastic representa-
tion of spotting and reliance on users to set key model parameters make them inefficient, 
and potentially inconsistent, tools to characterize SP. Related pre-fire transmission risk 
analyses account for spotting in similar ways [14,15]. Burn probability products from 
these analyses do not directly communicate spread mechanisms, nor do they easily inform 
resource needs for suppression tasks that would benefit from spatially explicit predictions 
of spotting sources and sinks. However, the underlying conceptual model of spotting in 
these systems [6,16] provides a sound basis for mapping ember source areas, transport 
paths, and landing locations that could be applied to containment-focused SP assessment. 

The goal of this paper is to introduce an operationally relevant spatial framework to 
characterize spot fire transmission potential, conditional on specified fire extent and 
weather. We first describe how models of ember production, transport, and ignition prob-
ability are combined to quantify SP for source, receiving, and transmitting units of the 
landscape. We then apply the framework to two wind-driven wildfires in Colorado, USA 
to demonstrate its utility for evaluating SP across control lines and suppression resource 
needs. 

2. Materials and Methods 
2.1. Spotting Potential Framework 

The intent of the SP framework is to combine models of ember production, transport, 
and receiving fuelbed ignition to produce a conditional measure of spot fire transmission 
potential for a given fire extent and weather scenario. We demonstrate the framework 
with data sources and models commonly used by fire managers in forested areas of the 
USA. 

Like others, we assume spotting only occurs when canopy fuels are engaged in com-
bustion [6,16]. Instead of randomly generating ember quantities based on user supplied 
spotting probabilities [16], we assume ember production is proportional to the mass of 
canopy fuels engaged in combustion, which we estimate as the product of canopy bulk 
density (CBD), a measure of canopy fuel mass per unit volume (kg m−3); and crown frac-
tion burned (CFB), a prediction of canopy proportion engaged in combustion. CBD is 
quantified with spatial data from LANDFIRE [17]. CFB is modeled for each raster cell with 
FlamMap [16] using the Scott and Reinhardt [18] method for crown fire activity. Relative 
ember production (EP) was then calculated as the product of CBD and CFB linearly re-
scaled so that 0.25 kg m−3, the approximate mean of CBD for common forest types in west-
ern North America [19], corresponds to the maximum value of 100 (Equation (1)). 

If CBD × CFB ≤ 0.25 kg m−3, EP = 400 × CBD × CFB; else, EP = 100, (1) 
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Ember transport is modeled with the FlamMap [16] implementation of Albini [6], 
which predicts maximum spotting distance (MSdist) and direction (MSdir) for each source 
pixel as a function of ember lofting height, horizontal transport by surface winds, and 
burn time. Lofting height is influenced by the number of torching trees, which is estimated 
from canopy cover and CFB [16]. Physical modeling studies of spotting suggest that ember 
landing density should peak near the source and decline with increasing distance [20–23]. 
We approximate this trend using a lognormal distribution with the mode (Mo) set to one 
quarter of MSdist (Equation (2)), and the mean of the distribution (μ) calculated assuming 
a standard deviation (σ) of 0.5 (Equation (3)). This parameterization ensures the probabil-
ity of exceeding MSdist is less than or equal to 0.01. Future work will focus on refining 
these parameters. 

Mo = 0.25 × MSdist. (2) 

μ = log(Mo)+ σ2. (3) 

A series of ember landing points are then generated at fixed intervals (30 m in this 
study) along a transect, from the source pixel to the maximum transport point. Each point 
is attributed with a probability density (f(x)) of reaching the specified transport distance 
using Equation 4, and the probability densities are rescaled so that they sum to one for the 
transect. 

f(x) = 1/(xσ × sqrt(2π)) × exp(−(ln(x) − μ)2/2σ2). (4) 

Ignition probability (IP) is quantified for each ember landing location based on An-
drews adaptation of Schroeder [24], which incorporates ambient temperature, fine fuel 
moisture (1-h fuels), and percent shading [25]. Percent shading is approximated using 
percent canopy cover from LANDFIRE [17]. Ambient temperature and fine fuel moisture 
are set by the user. Zero IP is assigned to embers that land in non-burnable fuel types. 

SP is a unitless index calculated for a single source pixel and ember landing location 
as the product of EP, transport distance f(x), and IP (Equation (5)). SP can also be summed 
for an area or barrier of interest (Equation (6)). 

SP = EP × f(x) × IP. (5) 

SP = SUM(EPi × f(x)i × IPi)|i = 1 to i = N. (6) 

The spatial topology of SP (Figure 1) can inform fire management tasks focused on 
source, receiving, and transmitting units of the landscape. We define source SP (SSP) as 
the total SP produced from a user-defined spatial unit (a raster cell or a multi-cell polygon) 
on the fire side of a control line, receiving SP (RSP) as the sum of SP delivered to a spatial 
unit on the green side of a control line, and transmitted SP (TSP) as the sum of SP that is 
transported across a control line from source to receiving unit(s). 

We developed our prototype SP model in R version 3.5.3 [26] using the following 
packages: raster version 2.8-19, rgdal version 1.4-3, rgeos version 0.4-2, and plyr version 
1.8.4 [27–30]. We utilized a command line version of FlamMap (Missoula Fire Sciences 
Laboratory, Missoula, MT, USA) to calculate the basic fire behavior inputs, including CFB, 
MSdist, and MSdir. 
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Figure 1. The spatial topology of the spotting potential (SP) framework is shown for a single source 
pixel on the fire side of the control line and the transect between the source pixel and maximum 
transport point. Only embers that land on the receiving side of the control line contribute to SP. 

2.2. Test Cases 
We applied the SP framework to two wildfire incidents in Colorado, USA (Figure 2) 

to evaluate its utility for containment planning. 

 
Figure 2. (a) Location of Colorado in North America. (b) Location of the test case fires in Colorado 
relative to major vegetation types from LANDFIRE [17]. 

The first test case is the 2019 Decker Fire that started on 8 September 2019 approxi-
mately 12 km south of Salida, Colorado. We use this case to evaluate how well RSP aligns 
with observed spotting behavior. We reconstructed spotting activity during the 30 Sep-
tember burn period using perimeter data derived from aerial infrared imagery [31] like 
Storey et al. [5]. New areas of fire growth on 30 September that did not intersect the pre-
vious daily perimeter were classified as spot fires. This excludes any spot fires that merged 
with the main fire during the burn period. Environmental conditions were approximated 
using the fuel moisture conditions at time 13:00 from the closest weather station (Bear 
Creek 053905) and the highest gust speeds documented in the incident report [32] (Table 1). 
We assumed the containment objective was to limit fire spread to the main fire extent at 
the end of the burn period. 

The second case study is the 2019 Elk Fire that started on 16 October 2019 near Red 
Feather Lakes, Colorado as the Elkhorn Prescribed Fire. The prescribed fire spotted across 
the containment lines due to strong winds. An after-action review documents the approx-
imate locations of the spot fires, suspected ember source areas, and observed weather [33]. 
We use this case to evaluate whether SP aligns with observed spotting behavior on the 
day of the escape. Environmental conditions for this run were set to the minimum hourly 
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fuel moistures near the time of the escape and the approximate maximum gust speed and 
direction from on-site observations and the nearest weather station (Red Feather 050505) 
(Table 1). We then model SP for the planned prescribed fire extent and weather scenarios 
from the burn plan [33] to illustrate how spotting magnitudes, evaluation of spotting risk, 
and tactics could adapt to changing weather. In both cases, we assumed the containment 
objective was to limit fire to the planned prescribed fire extent. 

Table 1. Fire environment characteristics for the test cases. Terrain influences on wind were modeled at 90 m resolution 
in FlamMap. 

Fire Scenario 
Fire Size 

(ha) 
Wind Speed 
(kph @ 6 m) 

Wind dir. 
(deg) 

Temp 
(deg C) 

1-h F.M. 
(%) 

10-h F.M. 
(%) 

100-h F.M. 
(%) 

Herb. F.M. 
(%) 

Woody F.M. 
(%) 

Decker 885 72.4 180 18.3 2 4 8 30 65 
Elk—observed  50 64.4 248 21.1 2 3 7 30 60 

Elk—low 200 16.1 225 4.4 13 15 17 60 90 
Elk—preferred 200 29.0 225 21.1 7 9 12 40 70 

Elk—high 200 38.6 225 29.4 4 6 8 30 60 

3. Results 
3.1. Decker Fire 

RSP captured the general trends in spot fire occurrence during the 30 September burn 
period (Figure 3). Of the 62 spot fires observed during the burn period, 43 (69.4%) were 
within 30 m of mapped RSP. Many of the remaining 19 spot fires would align with RSP 
modeled for slightly higher wind speeds or slight variations in wind direction but spotting 
activity in the northwest and southeast quadrants did not align well with RSP. Spot fires 
occasionally exceeded the modeled transport distances, but many of the spot fires were 
close to the main fire. Figure 4 compares RSP within 30 m of observed spot fires against 
RSP without nearby spot fires. The RSP distribution near spot fires is skewed towards 
higher values, but some spot fires were observed in areas with low RSP. 

  
Figure 3. Receiving spotting potential (RSP) for the 30 September 2019 burn period. The main fire is 
defined as any area that intersects the previous daily perimeter. Spot fires reflect new growth that 
is discontinuous with the previous daily perimeter. Areas with intense, scattered, or isolated heat 
within the main fire were considered potential ember sources. 
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Figure 4. Receiving spotting potential (RSP) distributions for the 30 September 2019 burn period 
for ember landing locations without spot fires and with spot fires. 

3.2. Elk Fire 
SSP and RSP modeled for the observed weather conditions are shown in Figure 5. 

Under these weather conditions, much of the unit has potential to produce embers that 
could cross the containment lines. The suspected ember source locations are in areas with 
high SSP. Contrary to our ember production sub-model, large downed fuels may have 
been the source of the escaped embers, but it is also possible that the embers were gener-
ated from the observed single tree torching in the same or nearby areas [33]. These 
hillslopes were actively burning during the escape, and their higher position than the 
planned containment line in the bottom of the valley reduces the lofting height needed for 
embers to transmit out of the unit. The three observed spot fires fall within areas with high 
RSP. 

 
Figure 5. Source spotting potential (SSP) and receiving spotting potential (RSP) for peak gust speed 
and direction associated with the Elk Fire. Suspected ember source locations and observed spot fire 
locations from the after-action review [33]. The actively burning unit is hatched red and the planned 
containment boundary is in black. 
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SSP, RSP, and TSP for the range of planned prescribed fire conditions (Table 1) are 
shown in Figure 6. At the low end of planned burn conditions, TSP is low (total = 7.8), and 
both SSP and RSP are near the containment lines where detection and likelihood of con-
tainment are high. TSP increases considerably for the preferred burn conditions (total = 
151). The ember sources are forested hillslopes that are higher than much of the terrain 
outside the burn unit. SSP and TSP extend approximately 400 m into and outside the unit, 
respectively. At the high end of the planned burn conditions, the source areas expand 
slightly and the total TSP increases to 643, which is approximately 80× higher than the low 
scenario and 4× higher than preferred scenario. For the high scenario, ember source and 
receiving areas extend approximately 600 m into and outside the unit, respectively. 

 
Figure 6. Source spotting potential (SSP) and receiving spotting potential (RSP) for the (a) low, (b) preferred, and (c) high 
fire weather conditions from the burn plan [33]. Transmitted spotting potential (TSP) is plotted for seven control line 
segments on the lee side of the planned burn extent. 

4. Discussion 
SP combines models of ember production, transport, and receiving fuelbed ignition 

in a spatial framework to quantify spot fire transmission potential for source, receiving, 
and transmitting units of the landscape. The focus on spot fire transmission makes SP 
more operationally relevant than maximum spotting distance alone, and it is a more di-
rect, consistent, and computationally efficient means to evaluate transmission potential 
than fire spread models that treat spotting as a stochastic process. Furthermore, SP retains 
spatial information on ember sources and sinks to inform spotting related suppression 
tasks. 

Our test cases show that SP can capture the general patterns of spotting for wind-
driven fires. Future research will test the framework in a wider range of conditions. Some 
spotting on the Decker Fire exceeded the modeled spotting distances, and a considerable 
proportion of spots were in areas with lower RSP. This could be due to either mischarac-
terization of the fire environment (wind speed and direction) or behavior (type and inten-
sity), lack of accounting of ember production from the spot fires themselves, imperfect fit 
of the transport distance probability function, or the limitations of the Albini [6] model. 
Models to simulate long-range spotting from active crown or plume dominated fires 
[20,21,23,34] will better predict transport distances under these conditions. For now, SP 
should be used cautiously on fires that exceed the intended scope of the Albini [6] model. 
We also observed spotting on the Decker Fire that did not align with the single modeled 
wind direction, likely due to unmodeled wind variability. A strategy to deal with uncer-
tainty in wind direction could be to calculate SP for several wind scenarios and to combine 
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the results with simple or weighted averaging. Poor directional alignment could also re-
sult from unaccounted for lateral transport [23]. 

There is also a need to evaluate and improve the EP and IP components. Estimating 
EP based on canopy mass engaged in combustion is more consistent than the stochastic 
production of embers in fire spread models [16], but our assumed scaling relationship is 
unvalidated. We also did not account for several factors that may influence ember gener-
ation, including inter-species differences in bark, branch, foliage, cone, or wood charac-
teristics and the presence of standing, dead, or downed trees from windthrow or insect 
mortality [35–38]. The focus on canopy fuels is clearly a limitation for SP assessment in 
non-forest environments. Our vision is that different measures of fire behavior and fuel 
characteristics could be substituted into the framework to predict spotting in other fuel 
types. Progressing towards absolute estimates of EP would improve the utility of SP. The 
IP component relies on a commonly used but incomplete model [25] that is missing im-
portant details on the type, amount, arrangement, and continuity of the receiving fuels. 

Estimates of containment probability are critical for suppression planning, yet few 
models evaluate the effectiveness of control lines exposed to spotting. Experimentation 
has shown that spotting increases breach probability [2], but it would be difficult and 
costly to develop similar models for different environments. Ensemble fire spread models 
(e.g., [8]) can be used to estimate the probability of spot fire transmission across barriers 
to surface fire spread, but this method is computationally intensive and subject to ana-
lysts’ choice of spot fire probability. SP offers a conditional estimate of spot fire transmis-
sion based on the same processes of ember production, transport, and receiving fuelbed 
ignition with lower computational demands. A limitation of SP is that empirical research 
is required to establish the relationship between TSP and spot fire probability. A potential 
advantage of empirically calibrating SP over predicting spot fire probability with primary 
variables (fuel type, wind speed, fire intensity, etc.) is that SP accounts for the driving 
factors mechanistically, so the model may be applicable to a wider range of environments. 

The ability to quantify and map SP should help managers prioritize the allocation of 
suppression resources. Measures of TSP could be used in the planning phase to prioritize 
containment where SP is low and, in the control phase, to shift resources to divisions with 
high risk of containment breaches. Maps of SSP and RSP magnitude, continuity, and 
depth could help managers think prescriptively about mitigating actions. For example, 
SSP could inform the depth of burnout needed to mitigate spotting in advance of fore-
casted weather changes, and RSP could inform the type (e.g., hand, engine, or aerial), 
amount, and location of resources assigned to spot fire patrol and containment. SP has 
potential for use in quantitative models of suppression of resource needs, similar to those 
used for fireline construction (e.g., [11]), because there are clear pathways to relate some 
suppression actions to SP; for example, fuels reduction on the fire side of the line will 
lower EP by avoiding crown fire activity, and retardant application on the green side of 
the line will lower IP. SP should also be useful for pre-fire fuel treatment planning. We 
avoided discussion of pre-fire applications here because they require complementary in-
formation on the probability of exposure to various fire conditions. 

5. Conclusions 
The SP framework provides an operationally relevant measure of spot fire transmis-

sion potential, conditional on specified fire extent and weather. Our application of SP to 
two test cases demonstrates that it can capture the general trends in spotting activity for 
wind driven fires. In its current form, SP is best suited for relative evaluations, but it can 
still provide useful information for operations. Control line TSP measures have potential 
to inform incident-level decisions of fireline selection and resource allocation. Fine-scale 
mapping of SSP and RSP has promise for informing tactical decisions, such as the depth 
of fuel removal or retardant application adjacent to control lines. Research priorities are 
evaluating SP performance in other environments, refining the component models, and 
quantifying the effectiveness of resources on spotting related suppression tasks. 
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