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Abstract: The calculation of the R-factor (rainfall erosivity) for implementation in soil erosion models
such as USLE (Universal Soil Loss Equation) and RUSLE (Revised Universal Soil Loss Equation)
encounters substantial difficulties due to the scarcity of spatial databases with adequate resolution
for territorial planning actions at the local level. Otherwise, there is a spatial database available
with a coarse resolution of themes that can be used to calculate the R-factor. We apply the spatial
downscaling—based on the following regression models: linear (LN), general additive model (GAM),
random forest (RF), cubist (CU)—to erosivity data (target variable) prepared for the State of São Paulo,
Brazil, with a spatial resolution of 2500 m. We used DEM and slope data with 30 m fine resolution
from the Atibaia watershed, located between the metropolitan regions of São Paulo (RMSP) and
Campinas (RMC), to apply the downscaling. This framework improved the spatial resolution of the
R-factor, which is necessary to calculate soil loss in the USLE and RUSLE equations in a territory
where data with a fine resolution are still limited to the development of territorial planning projects
at the local level. The RF model was better with R2 0.94.
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1. Introduction

The spatial variable scale is directly connected to image resolution. There is a large
variety of spatial databases at the global level, at various spatial scales, that can be utilized
for research at the global, continental, and regional levels; however, these bases are not
suited for usage at the local level, limiting their use in studies with higher spatial resolution.

Earth surface databases, such as Digital Elevation Models (DEM), are easily accessible
at a fine scale, allowing for local terrain analysis and the generation of other surface
attributes such as slope or aspect.

The downscaling process, which is frequently used in climate model research [1–4],
modifies the spatial resolution of data using algorithms and regression functions.

The application of the downscaling method to process Earth resource information
was proposed by Malone et al. [5], who developed the Caret package in R language,
supporting the use of this procedure in several areas of Earth sciences [6–8], including
terrain analysis [9].

Soil erosion research has produced a large amount of scientific output in regional and
continental dimensions. However, analytical variables are difficult to find at the local level,
hindering the growth of research in this field.

We used the downscaling approach proposed by Malone [5] in the database to refer
to the R-factor prepared by Teixeira et al. [10] in the Atibaia watershed [11], State of São
Paulo, Brazil (Figure 1).
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Malone et al. [5], who originated the Caret package in R language. In this methodology, 
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and the random forest (“rf”), cubist (“cubist”), MARS (“earth”), and linear model (“lm”) 
regression models. 

In the downscaling process, we employed the minimum (5) maximum (10) number 
of iterations. Before modeling, the dataset was randomly split into a collection of training 
samples (70%) and test samples (30%) for model validation. The regression models were 
then applied. 

Regression results are analyzed in raster maps: a graphical representation of the 
performance of regression models obtained by graphing observed values versus predicted 
values and calculating R2 and RMSE values. 

3. Results 
Figure 2 illustrates the spatial results of the regression models. 

Figure 1. Study area—Atibaia watershed. RMSP: São Paulo Metropolitan Region; RMC: Campinas
Metropolitan Region.

2. Methodology

The research methodology was divided into (1) interpolation of R-factor data; (2) prepa-
ration of the fine database, consisting of DEM and slope; and (3) downscaling.

To create the R-factor image, the point shapefile generated by Teixeira et al. [10] was
used. This data were interpolated, generating the R-factor image.

The spatial downscaling methodology used in the present study was proposed by
Malone et al. [5], who originated the Caret package in R language. In this methodology,
the authors use coarse grid spatial data for fine grid mapping using predictive covariates
and the random forest (“rf”), cubist (“cubist”), MARS (“earth”), and linear model (“lm”)
regression models.

In the downscaling process, we employed the minimum (5) maximum (10) number
of iterations. Before modeling, the dataset was randomly split into a collection of training
samples (70%) and test samples (30%) for model validation. The regression models were
then applied.

Regression results are analyzed in raster maps: a graphical representation of the
performance of regression models obtained by graphing observed values versus predicted
values and calculating R2 and RMSE values.

3. Results

Figure 2 illustrates the spatial results of the regression models.
Figure 3 and Table 1 illustrate the performance of each model according to observed

values versus predicted values.
According to the performance results, the RF model is the most accurate of all the

regression models evaluated. RF provided the highest R2 and lowest RMSE values, as
well as less dispersion compared to the straight line between observed and predicted
values. While the other models had very low R2 and higher RMSE values, as well as
more dispersion of observed and projected values in comparison to the straight line, this
suggested greater dispersion and error in the regression models.
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Figure 3. Models’ performance (unit: MJ mm ha−1 h−1 time unit−1).

Table 1. Models’ R2 and RMSE.

Model R2 RMSE

Cubist 0.136 488
GAM 0.0130 521
LM 0.0128 523
RF 0.945 133

4. Conclusions

This framework improved the spatial resolution of the R-factor, which is necessary to
calculate soil loss in the USLE and RUSLE equations in a territory where data with a fine
resolution are still limited to the development of territorial planning projects at the local
level. It may represent an alternative to determining the essential factors using soil loss
equations such as USLE and RUSLE in places with an insufficient fine-scale geodatabase.

The procedure adopted proved to be a methodology with the potential to expand
the application of the downscaling procedure to data associated with soil loss research,
allowing for the use of global databases at a local level, employing topography factors
such as elevation and slope. Other topographical factors can be employed in future studies
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to investigate the feasibility of employing them to improve the accuracy of the statistical
model in this method.
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