Dynamic Analysis of Water Surface Extent and Climate Change Parameters in Zarivar Lake, Iran †
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Earth Observation Data
3. Methodology
3.1. Water Surface Extent
3.2. LSWT Variable
3.3. Meteorological Data Impact on Water Surface Changes
4. Result and Discussion
4.1. Spatiotemporal Changes of Surface Water Extent
4.2. Rainfall Data and Surface Water Extent Changes
4.3. LSWT and Surface Water Extent Changes
4.4. Evapotranspiration Data and Surface Water Extent Changes
4.5. Comparative Analysis of Meteorological Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, L.; Xu, X.; Zhai, J.; Sun, C. Local Background Climate Determining the Dynamics of Plateau Lakes in China. Reg. Environ. Chang. 2016, 16, 2457–2470. [Google Scholar] [CrossRef]
- Wu, T.; Hu, X.; Zhang, Y.; Zhang, L.; Tao, P.; Lu, L. Automatic Cloud Detection for High Resolution Satellite Stereo Images and Its Application in Terrain Extraction. ISPRS J. Photogramm. Remote Sens. 2016, 121, 143–156. [Google Scholar] [CrossRef]
- Emami, H.; Zarei, A. Modelling Lake Water’s Surface Changes Using Environmental and Remote Sensing Data: A Case Study of Lake Urmia. Remote Sens. Appl. Soc. Environ. 2021, 23, 100594. [Google Scholar] [CrossRef]
- Rickert, B.; van den Berg, H.; Bekure, K.; Girma, S.; de Roda Husman, A.M. Including Aspects of Climate Change into Water Safety Planning: Literature Review of Global Experience and Case Studies from Ethiopian Urban Supplies. Int. J. Hyg. Environ. Health 2019, 222, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, R.; Sobhani, B.; Aghaee, M.; oshnooei nooshabadi, A.; Safarianzengir, V. Monitoring and Evaluation of Effective Climate Parameters on the Cultivation and Zoning of Corn Agricultural Crop in Iran (Case Study: Ardabil Province). Arab. J. Geosci. 2021, 14, 387. [Google Scholar] [CrossRef]
- Jalali, J.; Ahmadi, A.; Abbaspour, K. Runoff Responses to Human Activities and Climate Change in an Arid Watershed of Central Iran. Hydrol. Sci. J. 2021, 66, 2280–2297. [Google Scholar] [CrossRef]
- Ranjbar, S.; Zarei, A.; Hasanlou, M.; Akhoondzadeh, M.; Amini, J.; Amani, M. Machine Learning Inversion Approach for Soil Parameters Estimation over Vegetated Agricultural Areas Using a Combination of Water Cloud Model and Calibrated Integral Equation Model. J. Appl. Remote Sens. 2021, 15, 018503. [Google Scholar] [CrossRef]
- Albarqouni, M.M.Y.; Yagmur, N.; Bektas Balcik, F.; Sekertekin, A. Assessment of Spatio-Temporal Changes in Water Surface Extents and Lake Surface Temperatures Using Google Earth Engine for Lakes Region, Türkiye. ISPRS Int. J. Geo-Inf. 2022, 11, 407. [Google Scholar] [CrossRef]
- Vahid, R.; Farnood Ahmadi, F.; Mohammadi, N. Earthquake damage modeling using cellular automata and fuzzy rule-based models. Arab. J. Geosci. 2021, 14, 1274. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A. The Dynamics of Earth’s Surface Water. Nature 2016, 540, 348–349. [Google Scholar] [CrossRef] [PubMed]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.C. Satellite Remote Sensing of River Inundation Area, Stage, and Discharge: A Review. Hydrol. Process. 1997, 11, 1427–1439. [Google Scholar] [CrossRef]
- White, L.; Brisco, B.; Dabboor, M.; Schmitt, A.; Pratt, A. A Collection of SAR Methodologies for Monitoring Wetlands. Remote Sens. 2015, 7, 7615–7645. [Google Scholar] [CrossRef]
- Töyrä, J.; Pietroniro, A. Towards Operational Monitoring of a Northern Wetland Using Geomatics-Based Techniques. Remote Sens. Environ. 2005, 97, 174–191. [Google Scholar] [CrossRef]
- Singh, A.; Seitz, F.; Eicker, A.; Güntner, A. Water Budget Analysis within the Surrounding of Prominent Lakes and Reservoirs from Multi-Sensor Earth Observation Data and Hydrological Models: Case Studies of the Aral Sea and Lake Mead. Remote Sens. 2016, 8, 953. [Google Scholar] [CrossRef]
- Lu, L.; Sun, H. Dynamic Monitoring of Surface Water Areas of Nine Plateau Lakes in Yunnan Province Using Long Time-Series Landsat Imagery Based on the Google Earth Engine Platform. Geocarto Int. 2023, 38, 2253196. [Google Scholar] [CrossRef]
- Sadeghi, A.; Galalizadeh, S.; Zehtabian, G.; Khosravi, H. Assessing the Change of Groundwater Quality Compared with Land-Use Change and Precipitation Rate (Zrebar Lake’s Basin). Appl. Water Sci. 2021, 11, 170. [Google Scholar] [CrossRef]
- Sulugodu, B.; Deka, P.C. Evaluating the Performance of CHIRPS Satellite Rainfall Data for Streamflow Forecasting. Water Resour. Manag. 2019, 33, 3913–3927. [Google Scholar] [CrossRef]
- Banerjee, A.; Chen, R.; Meadows, E.M.; Singh, R.B.; Mal, S.; Sengupta, D. An Analysis of Long-Term Rainfall Trends and Variability in the Uttarakhand Himalaya Using Google Earth Engine. Remote Sens. 2020, 12, 709. [Google Scholar] [CrossRef]
- Lobell, D.B.; Lesch, S.M.; Corwin, D.L.; Ulmer, M.G.; Anderson, K.A.; Potts, D.J.; Doolittle, J.A.; Matos, M.R.; Baltes, M.J. Regional-scale Assessment of Soil Salinity in the Red River Valley Using Multi-year MODIS EVI and NDVI. J. Environ. Qual. 2010, 39, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; DeVries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Creed, I.F.; Carroll, M.L. Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sens. 2018, 10, 797. [Google Scholar] [CrossRef]
- Dyba, K.; Ermida, S.; Ptak, M.; Piekarczyk, J.; Sojka, M. Evaluation of Methods for Estimating Lake Surface Water Temperature Using Landsat 8. Remote Sens. 2022, 14, 3839. [Google Scholar] [CrossRef]
- Tran, K.H.; Menenti, M.; Jia, L. Surface Water Mapping and Flood Monitoring in the Mekong Delta Using Sentinel-1 SAR Time Series and Otsu Threshold. Remote Sens. 2022, 14, 5721. [Google Scholar] [CrossRef]
- Xu, X.; Xu, S.; Jin, L.; Song, E. Characteristic Analysis of Otsu Threshold and Its Applications. Pattern Recognit. Lett. 2011, 32, 956–961. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
r (Coefficient Correlation) | Winter | Spring | Summer | Autumn |
---|---|---|---|---|
LWB-LSWT | 0.10 | 0.26 | −0.30 | −0.06 |
LWB-Precipitation | 0.67 | 0.74 | 0.30 | 0.30 |
LWB-Evapotranspiration | 0.49 | 0.59 | 0.60 | 0.46 |
Precipitation-Evapotranspiration | 0.47 | 0.82 | 0.40 | 0.59 |
LSWT- Evapotranspiration | −0.21 | 0.14 | 0.24 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostami, E.; Vahid, R.; Zarei, A.; Amani, M. Dynamic Analysis of Water Surface Extent and Climate Change Parameters in Zarivar Lake, Iran. Environ. Sci. Proc. 2024, 29, 71. https://doi.org/10.3390/ECRS2023-17345
Rostami E, Vahid R, Zarei A, Amani M. Dynamic Analysis of Water Surface Extent and Climate Change Parameters in Zarivar Lake, Iran. Environmental Sciences Proceedings. 2024; 29(1):71. https://doi.org/10.3390/ECRS2023-17345
Chicago/Turabian StyleRostami, Ehsan, Rasool Vahid, Arastou Zarei, and Meisam Amani. 2024. "Dynamic Analysis of Water Surface Extent and Climate Change Parameters in Zarivar Lake, Iran" Environmental Sciences Proceedings 29, no. 1: 71. https://doi.org/10.3390/ECRS2023-17345
APA StyleRostami, E., Vahid, R., Zarei, A., & Amani, M. (2024). Dynamic Analysis of Water Surface Extent and Climate Change Parameters in Zarivar Lake, Iran. Environmental Sciences Proceedings, 29(1), 71. https://doi.org/10.3390/ECRS2023-17345