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Abstract: In an era marked by tools like Artificial Intelligence (AI), Machine Learning (ML) and remote
sensing (RS), agriculture is a primary beneficiary. These technologies help to optimize agricultural
productivity, by improving resource usage and increasing yield. They not only optimize resource use
but also adapt to climate change, necessitating the management of risks associated with agricultural
practices. Vegetation Indices (VI) such as the Normalized Difference Vegetation Index (NDVI) are
relatively simple yet useful algorithms that can be used to implement precision agriculture (PA).
Optical satellite images can sense the reflected lights coming from leaves which can provide various
crop development information used to implement PA. This study involves monitoring agricultural
production both seasonally and daily using Sentinel-2 multi-spectral time-series data. Time-series
images from 2017 to 2022 are analyzed to estimate phenological dates of crops. To understand these
stages, a combination of MSAVI (Modified Soil-Adjusted Vegetation Index) and NDVI is used. First,
the mean MSAVI is calculated by the year, depending on thresholds, NDVI values are replaced with
MSAVI values for certain dates, and phenological dates are determined according to the merged
mean Vegetation Index (VI) values. The results are compared with a Crop Progress Report (CPR)
published by the United States Department of Agriculture (USDA) with Root-Mean-Square Error
(RMSE). After finding the stages, the field is mosaicked for each stage for each year. For the bare
soil dates, a Normalized Difference Salinity Index (NDSI) is calculated to understand the change in
soil salinity. For the dates of emergence and silking, MSAVI is used. For the dough, dent, mature
and harvest stages, NDVI is used. To understand daily changes, object-oriented and pixel-based
methods (land segmentation) for field models are used to detect trends in the field. The standard
deviation of every pixel is calculated, and clusters are created with the k-means clustering algorithm.
The field model includes the characteristics of the field. In PA, site-specific solutions are extremely
important to get the optimum results. Since meteorological events have a great effect on agricultural
applications, using meteorological data is the main milestone to improve this study. Overall, this
research aims to contribute to regional agricultural production and management modules by using
remote sensing and machine learning technology.
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1. Introduction

In order to meet the nutritional needs of the increasing population, there is a need
to implement agricultural practices in smarter and more strategic ways. These advanced
but careful methods are needed not only to meet demand but also to optimize costs while
considering sustainability. One of the main information resources to understand a field is
looking at its time series history [1]. Agricultural RS, which mainly uses surface reflectance
information of visible, near-infrared and shortwave-infrared regions of the electromagnetic
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spectrum, is used to handle site-specific solutions to implement PA. GeoAI (Geospatial
Artificial Intelligence) is a sub-field of Artificial Intelligence (AI) which focuses on the
applications of AI to geospatial data and problems. GeoAI methods can analyze remote
sensing data to make better predictions for implementing PA.

It has been known that NDSI is used at the very beginning of planting to evaluate the
soil conditions. It measures the salt content [2] in the soil which can impact the growth
and yield of crops. MSAVI can be used to monitor early growth because it eliminates
the background effects in areas where soil is not completely covered by vegetation [3].
NDVI is used when the crops have grown to a stage where the fields are fully covered by
vegetation [4]. NDVI is a powerful tool to estimate phenology of crops[5].

Phenological stages of crops refer to the distinct phases in the life cycle of a crop [6].
Understanding these stages is crucial for managing crop growth as they determine the
optimal timing for various agricultural activities like irrigation, application of fertiliz-
ers and pesticides, and harvest [7]. Timing is crucial for agricultural practices so that
the in-season interventions can be done on time and future seasons can be planned for
optimum production.

The motivation for this study emerged from the potential that technology holds for
revolutionizing agriculture. Vegetation Indices (VI) such as NDVI, MSAVI, and NDSI can
be used to implement precision agriculture (PA), which optimizes resource use, increases
yield, handles risk management and so on. Additionally, the usage of ML algorithms for
predicting phenological shifts in crops enables optimal agricultural planning for future
seasons. Thus, the combination of remote sensing and a data-driven approach can create a
transformative impact on regional agricultural practices and policies.

There are some novel methods to estimate phenologic dates [8–12]; however, these
works mostly focus on the regional area and use satellite data with low temporal and spatial
resolution. In this study, phenologic dates are tried to estimate field level with high spatial
and temporal resolution satellite images by using MSAVI and NDVI. For bare soil stages,
NDSI used to understand soil salinity. Also, after deciding the dates, phenological stage
rasters are mosaicked in between to understand field dynamics in a time series manner.
These mosaicked rasters are studied to create meaningful results and clustered according
to the temporal data.

2. Materials and Methods
2.1. Study Site

Illinois is the top farming state in the United States and is in a region known as the
Corn Belt. The main crops grown in the state are corn and soybeans (USDA FAS accessed
on 10 August 2023). In this study, one field located in Illinois is selected. Corn is the only
product grown in this field between the years 2017 and 2022. This information was taken
from crop-type maps published by the United States Department of Agriculture—National
Agricultural Service (NASS accessed on 10 August 2023). The field is located over 40.128°
to 40.142° N latitude and 88.335° W to 88.35° W longitude and covers an area of about
240 ha. Figure 1 shows the study area and crop type map.

Figure 1. Study Site.

https://fas.usda.gov/data/production/commodity/0440000
https://www.nass.usda.gov/Research_and_Science/Crop_Progress_Gridded_Layers/index.php
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2.2. Remote Sensing Data

Sentinel satellites are part of European Space Agency’s (ESA) Copernicus Program. In
this study, Sentinel 2 bands were used between the years 2017 and 2022.

2.3. Crop Progress Report

The United States Department of Agriculture publishes the Crop Progress Report
(CPR) which gives information about phenological dates of crops. For this study, CPR data
were downloaded, interpolated and masked by selected field area. According to the mean
pixel values for every week, a table was created and crop phenological stages were written
to the corresponding values. In the CPR report, corn phenological stages are declared as
planted, emerged, silking, dough, dent, mature and harvest (Table 1).

Table 1. Description of phenological stages for corn.

Stage Explanation 1

Planted When crops are planted
Emerged When the plants can be seen above the soil
Silking When thread-like filaments appear from the tips of the ears
Dough When about half the kernels have indents and all kernels have a doughy substance

Dent When every kernel is fully indented, and the ear feels solid with mostly no liquid
inside the kernels

Mature The plant is considered frost-resistant, corn is nearly ready for harvesting, the outer
layers are open, and no green leaves are there

Harvest The plant is collected from the field, either by cutting, threshing, or other means
1 USDA—NASS.

2.4. Phenology Estimation Model

In this study, for the detection of phenology stages, a combination of threshold based
and slope-based method was developed. The first step of this method was to find MSAVI
and NDVI time series values. Satellite images can contain some misinformation because
of atmospheric noises, clouds and shadows [13]. Pre-processing steps were handled for
the new merged time series vegetation index data to eliminate these kinds of noises and
misinformation and to smooth the time series data (Figure 2). In this study, a median
filter [14] and a Savitzky–Golay (SG) filter [15] were used. First, the median filter was
applied, aiming to smooth the time series by removing observations that deviate from the
local trend. The process was done by replacing each value with the median value during its
five-day temporal moving window. Then, the SG filter was implemented to the filtered time
series data. In the SG filter, there are two parameters, window length and polynomial order.
The window length specifies how many neighboring points are used for the polynomial fit.
The polynomial order defines the complexity of fitting the polynomial.

Figure 2. Original MSAVI, original NDVI and merged vegetation index data (if MSAVI is bigger than
0.6, it is replaced with NDVI values) (first graph); pre-processing steps applied to merged vegetation
index (second graph).

After that, the dates and values of MSAVI having mean values bigger than 0.6 were
replaced with NDVI values, and a new data set was created. VI thresholds were determined

https://www.nass.usda.gov/Research_and_Science/Crop_Progress_Gridded_Layers/index.php
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to estimate emerged, silking and dough stages. With the combined VI dataset, the slope-
based method was studied to estimate dent, mature and harvest stages. The planted stage
was not estimated, instead bare soil dates were extracted from the MSAVI graph to measure
soil salinity.

2.5. Field Characteristics Model

Based on the crop stage dates determined with a phenology estimation model, raster
data belonging to those dates were mosaicked. For bare soil dates, NDSI images were
merged. For emergence and silking stages, MSAVI rasters were merged, and for dough,
dent, mature and harvest NDVI rasters were merged. Mosaic maps were created first as
year-based, then the cluster information coming from the years were mosaicked again.
At the end, one raster layer for every stage was created, and the standard deviation was
calculated for the pixels. The time series standard deviation layer gives information for
pixel variability over time [16]. This information is important to understand the field on
a specific site. After extracting the standard deviation raster, with k-means algorithms,
clusters were created. These clusters show how the field needs to be cared.

3. Results

After running the threshold and slope-based phenological detection algorithm, the
results were compared to CPR dates. In Table 2, estimated and CPR based phenological
dates for the year 2021 can be seen. The same table was created for the other years. For the
entire study years, depending on the week of the year (WOY), the phenological dates were
marked with CPR dates (Figure 3).

Table 2. Estimated dates are compared with CPR dates for 2021.

2021 Threshold-Based CPR-Based

Planted - 9 April
Emerged 26 March 30 April
Silking 30 May 4 June
Dough 3 August 16 July
Dent 23 August 13 August

Mature 7 September 27 August
Harvest 27 September 17 September

The accuracy of the combined estimation method was evaluated using the RMSE (Root-
Mean-Square Error) method. To calculate RMSE, start dates of phenological stages were
turned in to Day of Year (DOY) format. The overall RMSE for estimating corn phenological
stages was calculated as 7.44 days. A stage-specific analysis reveals that the highest error
occurred in the emergence stage with an RMSE of 5.58 days, while the lowest error was
found in the silking stage with an RMSE of 1.67 days. Other stages like harvest, dough,
mature and dent had RMSE values of 2.58, 2.97, 3.51 and 3.54 days respectively. When the
emergence stage was excluded from the dataset, the overall RMSE improved to 4.61 days.

Figure 3. Phenological stages found by threshold and slope-based algorithm and from CPR are
marked for week of the year.
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For the bare-soil dates which are in the range between 4 February 2021 and 16 March
2021, NDSI rasters were mosaicked and clustered to understand the bare-soil trends. The
same process was applied for the other years (Figure 4).

Clusters were created depending on the pixel-level standard deviation values. These
clusters were named as object-based field characteristics for decision makers to understand
the field more precisely (Figure 4).

Figure 4. Standard deviations of pixel values in phenological stage rasters and results from the
K-means clustering algorithm. A cluster with a high number is calculated depending on high-
standard-deviation pixels, a cluster with a low number is calculated depending on low-standard-
deviation pixels.

If crop fields are well managed, one would anticipate high variability in conditions. On
the other hand, low variability suggests that the land is not being actively managed, or the
land is showing a trend that the area possibly has a characteristic problem, indicating that
the area should be managed differently than the entire field [16]. Therefore, the clusters with
high class are showing the problematic areas for different stages. Management decisions
should be made based on these classes.

4. Discussion

The model currently investigates a corn field in Illinois, and its applicability to other
crops and regions needs further study. Also, there is room for improvement in the early-
stage "Emergence" predictions. Further ground observation work is needed to understand
and correct the field characteristics in the field model. Future work can also focus on
incorporating other factors like weather conditions and soil nutrient content to improve
the model’s robustness.

5. Conclusions

This study exemplifies how the integration of GeoAI, remote sensing and machine
learning can improve precision agriculture. It not only offers a robust model for under-
standing and predicting crop phenological stages but also opens roads for more focused
and site-specific agricultural practices. In precision agriculture, the right source, right rate,
right time and right place are important. In this study, the right timing is estimated through
phenology analysis. The field model, as related to phenology estimation, tries to create
solutions for the right source, right place and right rate.
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The following abbreviations are used in this manuscript:

MSAVI Modified Soil Adjusted Vegetation Index
NDVI Normalized Difference Vegetation Index
VI Vegetation Index
PA Precision Agriculture
AI Artificial Intelligence
GeoAI Geospatial Artificial Intelligence
RMSE Root Mean Square Error
NASS National Agriculture Statistics Service
USDA United States Department of Agriculture
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