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Abstract: This study assesses ALOS-2/PALSAR-2 (ALOS2) polarimetric images for detecting forest
volume losses due to selective logging in a region in the Brazilian Amazon. Two logging-intensive
areas, APU 2016, and APU 2017, were studied. ALOS2 imagery attributes, including backscatter and
phase data, were analyzed for differences between logged and unlogged regions using Wilcoxon’s
nonparametric test at a 95% confidence level. The Radar Normalized Difference Vegetation Index
proved effective in detecting selective logging-induced forest volume losses, with consistent results
(p-values of 0.003 for APU 2016 and 0.037 for APU 2017). These findings provide insights for
monitoring and mitigating ecological impacts of logging in complex forest ecosystems.
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1. Introduction

Selective logging consists of removing timber-selected tree species and usually takes
place in limited areas and over short periods [1,2]. This process can lead to a deterioration
of canopy density and structure [3], causing a reduction in aerial biomass [4] and photosyn-
thesis [5]. It can also harm the canopy floristic composition [6] and increase the risk of the
local extinction of native species [7].

Increased canopy openness due to selective logging can contribute to enhancing
microclimatic changes, which, in turn, influence the proliferation of exotic species [8]. The
sum of these changes can contribute to increasing the mortality rate of trees [6]. The recovery
time of areas affected by selective logging is often determined by the pre-perturbation
conditions of the biophysical structure and the intensity of the disturbance [9].

According to Curtis et al. [10], selective logging stands out as a prominent contrib-
utor to tropical forest degradation. This degradation phenomenon has notably gained
momentum across most tropical forests, driven primarily by the escalating demand for
timber products [11]. Research by Barros et al. [12] underscores this trend, specifically in
the Amazon region. Their findings emphasize the frequent occurrence of selective logging,
particularly targeting timber species of high commercial value. The upsurge in this activity
can be attributed to the burgeoning domestic timber market and concurrent enhancements
in road infrastructure.

Selective logging, when executed without adherence to sustainable forest management
practices, leads to the formation of heterogeneous forest landscapes with remnants of
logging infrastructure, as well as degraded forests [13]. This type of degradation increases
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a forest’s susceptibility to events such as fire and drought [14] and can also be a precursor
to deforestation [15]. Consequently, it does not ensure the preservation of the forest cover,
its structure and diversity, and the regional ecology of the forest ecosystem [16].

Studies on the impacts caused by forest degradation due to selective logging processes
are of fundamental importance. Monitoring and quantifying biomass losses caused by
forest degradation due to selective logging, by using remote sensing products, is still a major
challenge, especially since changes in forest cover are very subtle and punctual. In this
sense, this study focuses on evaluating the capabilities of ALOS-2/PALSAR-2 polarimetric
images for detecting forest volume losses resulting from the selective logging process in
Tapajós National Forest, situated in the Brazilian Amazon rainforest.

2. Materials and Methods
2.1. Study Area

The study area is composed of two Annual Production Units (APUs)—APU 2016
and APU 2017—inserted into the Tapajós National Forest (TNF) near the BR-163 highway
(Cuiabá/Santarém highway), in the Pará state, Brazil.

Despite the APUs being areas with high timber exploration (between 27 m3 ha−1

and 29 m3 ha−1) [17], the timber management in these areas is carried out sustainably.
Together, APU 2016 and APU 2017 cover an area of approximately 10.7 km2. The main
species selected for selective logging were maçaranduba (Manilkara huberi), tauari (Couratari
guianensis), jarana (Lecythis lurida), and goiabão (Pouteria bilocularis), with only those with a
diameter greater than or equal to 50 cm being considered.

2.2. Field Data

The sample set consists of selective logging points obtained from the Cooperativa
Mista da Floresta Nacional do Tapajós (Coomflona). For each sample point, representative
geographic coordinates (latitude and longitude), using a global positioning system (GPS)
receiver (Garmin 60CSx and 64s models), were gathered.

A set of 1127 selective logging samples was obtained for APU 2016. The selective
logging period in this area was between 28 December 2016 and 30 January 2017. In turn, for
APU 2017, a set of 1103 selective logging samples was obtained, and the selective logging
period was between 11 November and 7 December 2017. Further details on the acquisition
of the field samples can be found in Wiederkehr, 2022 [17].

2.3. Control Group

To create the control group, data from undisturbed and undegraded tropical moist
forest (TMF) mapping from 1982 to 2020, freely available on the platform of the European
Commission’s Joint Research Centre, were used as references. To compose the control
group, 567 random points were generated in a vector format using QGIS v.3.6.10 software,
with a minimum distance of 100 m, inserted into a total area of around 664 km2. These
points were overlaid on the undisturbed and undegraded tropical rainforest map, which
were in a raster format. From this overlay, it was possible to extract the forest sample values
for all of the random points generated from the map.

2.4. SAR Images and Processing

Four dual polarimetric images, HH and HV, in a StripMap-3 mode from the ALOS-
2/PALSAR-2 satellite (ALOS2), L band (~23.6 cm), with a 1.1 processing level (Single
Look Complex data), were used. The multitemporal ALOS2 images were acquired on 18
September 2016, 5 February 2017, 12 November 2017, and 13 May 2018. These acquisition
dates correspond to the periods before and after selective logging exploration. The image
pairs used by the field samples and control group associated with each APU are listed in
Table 1.
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Table 1. ALOS2 image pairs correspond to the periods before and after selective extraction in each
annual production unit (APU).

Image Acquisition

APU Before After Nº Samples Period of Selective
Logging

APU
2016 18 September 2016 5 February 2017 1127 28 December 2016–30

January 2017

APU
2017 12 November 2017 13 May 2018 1103 20 November 2017–7

December 2017

Sentinel Application Platform (SNAP) version 8.0 software was used for the ALOS2
image processing. The multilook processing was carried out with a window size of 1 pixel
in range and 2 pixels in azimuth, which resulted in pixel spacing of 5.13 m in the range
direction and 3.22 m in the azimuth direction. The BoxCar filter with a 3 × 3 pixel window
was applied to reduce the speckle noise, and afterwards H-α polarimetric decomposition
was carried out [18], in order to extract the entropy (H), and alpha angle (α-ALOS2)
attributes.

The ALOS2 images were also radiometrically calibrated into backscattering coefficients
(σ◦) that allowed for generating the Radar Normalized Difference Vegetation Index [19]
and the grey-level co-occurrence matrix—GLCM [20]—in HV polarization. The GLCM
attributes considered were contrast (Con), energy (Ener), and maximum probability (Max).
Images were geometrically corrected using a 30 m digital elevation model derived from the
Shuttle Radar Topography Mission. The last procedure consisted of the co-registry by the
neighbor distance method. After carrying out all of the procedures in the processing step,
a final pixel size of 8.24 m was obtained for the georeferenced products derived from the
ALOS2 images.

2.5. Forest Volume Loss Detection Procedures

A pixel-by-pixel detection approach was used to verify the hypothesis of vegetation
volume loss due to degradation via selective logging processes. In this approach, each
selective logging sample corresponds to a pixel in the ALOS2 images. In this sense, a
pixel with a spatial resolution of 8.24 m corresponds to a total area of 67.90 m2, which is
considered the smallest total area possible to be imaged via the ALOS2/PALSAR2 system.
The main assumption is a change in the value of each pixel investigated. Before selective
logging, a pixel corresponding to unchanged vegetation has a certain value associated
with it. After selective logging, it is expected that the respective pixel will have another
associated value since trees have been felled and adjacent logging activities have been
carried out.

2.6. Evaluation

To validate the results obtained from the detection of forest volume loss, a non-
parametric Wilcoxon test was applied. The Wilcoxon test has the null hypothesis, H0, that
the two samples follow the same probability distribution, and the alternative hypothesis,
H1, that the distributions of the two samples are different. The Wilcoxon test returns a
p-value, which is compared to the significance level of 0.05.

In this sense, to validate whether the differences detected in the forest volume of the
field samples are significant, at a significance level of 0.05, we expect to reject hypothesis
H0 and accept hypothesis H1. On the other hand, for the control group, we expect to accept
hypothesis H0 and reject hypothesis H1, since, theoretically, there was no forest disturbance
in the control areas; consequently, the samples follow the same probability distribution.
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3. Results and Discussion
3.1. Detecting Forest Volume Losses from the Control Group

The control sample group was employed to evaluate whether the disparities observed
in forest volume could be attributed to degradation processes stemming from selective
logging or possibly random variations. A total of six attributes extracted from the ALOS2
images were tested.

The SAR attributes tested (RNDVI, Con, Ener, Max, H, and α-ALOS2) and associated
with both APUs, 2016 and 2017, in the Wilcoxon test indicated that the distributions of
the samples observed before and after the hypothetical selective logging event followed
the same distributions, with p-values ranging from 0.055 to 0.807 (Table 2). This sug-
gests that there were no significant differences between the same samples analyzed in
different periods.

Table 2. Wilcoxon test results applied to the control group from the 2016 and 2017 APUs.

APU 2016 APU 2017

Attribute p-Value Conclusion p-Value Conclusion

RNDVI 0.276 Accept H0
1 0.077 Accept H0

Con 0.460 Accept H0 0.055 Accept H0

Ener 0.511 Accept H0 0.068 Accept H0

Max 0.567 Accept H0 0.230 Accept H0

H 0.561 Accept H0 0.807 Accept H0

α-ALOS2 0.549 Accept H0 0.622 Accept H0
1 Wilcoxon test applied at a significance level of α = 0.05. Interpretation of the test: accepting the H0 hypothesis
indicates that the samples follow the same distribution.

3.2. Detection of Forest Volume Losses from Field Samples

According to the Wilcoxon test results for APUs 2016 and 2017, in Ener and Max,
the samples followed the same distributions (Table 3). For 2016, p-values of 0.776 for
Ener and 0.631 for Max were obtained. For 2017, p-values of 0.056 for Ener and 0.756 for
Max were obtained. These results suggest that the radar signal did not detect significant
variations between the radiometric responses of the samples, denoting the low potential of
this attribute.

Table 3. Wilcoxon test results applied to the field data sample from the 2016 and 2017 APUs.

APU 2016 APU 2017

Attribute p-Value Conclusion p-Value Conclusion

RNDVI 0.003 Reject H0
1 0.037 Reject H0

Con 0.001 Reject H0 0.0001 Reject H0

Ener 0.776 Accept H0 0.056 Accept H0

Max 0.631 Accept H0 0.756 Accept H0

H 0.0001 Reject H0 0.501 Accept H0

α-ALOS2 0.0001 Reject H0 0.227 Accept H0
1 Wilcoxon test applied at a significance level of α = 0.05. Interpretation of the test: accepting the H0 hypothesis
indicates that the samples follow the same distribution; rejecting the H0 hypothesis implies accepting the H1
hypothesis, which suggests that the sample distributions are different.

For the RNDVI attribute, the statistical test suggested that the sample distributions
were different in both APUs, with p-values of 0.003 for 2016 and 0.037 for 2017, denoting
sensitivity in detecting differences in forest volume due to selective logging events. These
results show that the RNDVI was able to detect forest volume losses for both APUs
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(Figure 1b). After selective logging, there was subtle radar signal decay in the RNDVI.
This result was expected, as the RNDVI is a biophysical index that is sensitive to the
vegetation presence [19]. In this sense, the radar signal decay denotes little or no presence
of tree vegetation in the terrain resolution cells investigated, after thinning by selective
logging processes.
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The Con attribute also showed sensitivity in detecting forest volume losses due to
selective logging. The Wilcoxon test indicated that the differences between the sample
distributions were significantly different, with p-values ≤ 0.0001 in APU 2016 and APU
2017. The Con attribute obtained an increase in the intensity of the pixel values after
selective logging exploitation. This increase is associated with a greater contrast between
the radiometric responses of the vegetation samples. According to Hethcoat et al. [21], the
high values in the contrast measure obtained after selective logging disturbances may be
associated with the visual edges of the selectively logged areas.

The Wilcoxon test applied to the α-ALOS2 attribute indicated that the differences
between the sample distributions were significantly different, with p-values between 0.0001
in APU 2016. On the other hand, for APU 2017, the Wilcoxon test indicated that α-ALOS2
tended to follow the same probability distributions, showing p-values of 0.227 (Table 3).
In this sense, the α-ALOS2 attribute, when associated with the APU 2016 dataset, showed
potential for detecting forest volume losses. There was a decrease in pixel intensity in the
samples after selective logging, indicating a decrease in the radar signal due to tree removal.
This result was also expected, as the removal of trees leads to the greater interaction of
electromagnetic waves with the ground surface [22].

Regarding the H attribute, the Wilcoxon test applied to APU 2016 indicated that the
differences between the sample distributions were significantly different, with p-values
of 0.001. It was observed that there was slight radar signal decay after selective logging
exploration. According to Khati et al. [22], this result was expected, because with the
removal of trees there is an absence of and/or reduction in the structural volume of tree
vegetation; consequently, there are fewer spreading mechanisms (leaves, branches, stems,
and trunks) interacting to depolarize the electromagnetic waves, resulting in a lower
backscattering intensity in H.

For the H attribute for APU 2017, the Wilcoxon test suggests that samples tended
to follow the same probability distributions, showing p-values of 0.501 (Table 3). As
observed with α-ALOS2, the longer time interval between the acquisition of the ALOS2
image and selective logging exploration may have influenced the results. The initial
regeneration of vegetation in areas previously subjected to selective logging could have
influenced augmentation of the backscatter signal in the H attribute volume variations
within the forest canopy; however, when considering a longer time frame, specifically five
months post-selective logging, these same attributes did not show any discernible trends
or potential effects.
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4. Conclusions

The results obtained by the attributes extracted from dual polarimetric images from
ALOS-2/PALSAR-2 showed different performances and capacities for detecting forest vol-
ume losses due to high-intensity selective logging (~27–29 m3 ha−1). The contrast attribute
derived from the GLCM and biophysical RNDVI were particularly sensitive to detecting
forest volume losses due to selective logging processes in the two APUs investigated.

Despite technological advances in the detection and monitoring of large-scale selective
logging, there are still many uncertainties in assessing the impact of selective logging on
the carbon balance, as well as the impact on the forest environment. Therefore, further
investigations are warranted, encompassing diverse sensor systems and their combinations,
time series analyses, and the development of novel computer algorithms. These efforts
are essential to enhancing our comprehension of the capabilities of these data in detecting
forest degradation attributed to selective logging processes.
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