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Abstract: The connection between solar irradiance and wind is a topic of interest in the field of
renewable energies, as wind data have proven to be effective predictors of solar energy, being
indicators of cloud movement and atmospheric conditions. This study focuses the use of decision
tree-based algorithms (random forest, XGBoost and light gradient boosting machine, and LightGBM)
to analyse the impact of the meridional and zonal wind components as input variables. In the study,
past observations of neighbours were included as predictors to include a spatiotemporal analysis.
The studied models were trained on the open, well-established OIH dataset (containing data from
Oahu Island, Hawaii, located in the United States of America) featuring predominantly northeasterly
winds. In the post-training analysis, it was found that the inclusion of the wind components resulted
in a mean improvement of approximately 1% in the forecast skill (FS) score for all models, with the
XGBoost model being the best performing model (with a 27.63% FS score).

Keywords: wind; global horizontal irradiance forecast; machine learning; spatiotemporal approach

1. Introduction

Many factors (such as cloud cover, atmospheric conditions, and the terrain characteris-
tics) affect the amount of solar radiation that reaches the surface of the Earth. In research
related to global horizontal irradiance (GHI) forecast with machine learning (ML), popular
techniques used to optimise the models are the spatiotemporal approach that can capture
climate conditions at the point of prediction, or the use of meteorological explanatory
variables to include weather patterns. In this regard, wind data were used to train a set
of autoregressive models for solar radiation forecast, and a higher forecast skill score was
obtained using the dominant wind direction in the region [1]. Mukhoty et al. [2] used
wind data to sequence deep learning models for solar radiation forecast and concluded
that features such as wind direction, wind speed, and the GHI of neighbouring locations
improved the prediction accuracy of the models.

Considering the impact of the wind direction and wind speed variables, we aim to
study the impact of using its zonal and meridional components in solar radiation prediction
by introducing the mentioned wind components as input variables and evaluating their
influence on the predictive capability of the model implementations. To meet this objective,
a spatiotemporal approach that includes lags (values at prior time steps) from neighbouring
stations will be used to train and evaluate three popular tree-based ML models, namely
(1) random forest, or RF, (2) gradient boosting trees, or GBT, and (3) light gradient boosting
machine, or LightGBM.

The remainder of the document is structured as follows. Section 2 describes the data,
the models studied, and methodology applied. Section 3 presents the results obtained and
the corresponding discussion, while Section 4 draws the conclusions of the study.
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2. Materials and Methods

For the study, publicly available data provided by the National Renewable Energy
Laboratory, namely the OIH dataset [3], were selected. The dataset is formed by seventeen
irradiance sensors (named from here on, measuring locations) located on the Oahu Island of
Hawaii, with one square kilometre of spatial resolution (as shown in Figure 1) and provides
a high density for the analysis to be carried out. The time resolution for measuring the GHI
is one second (from March 2010 to October 2011). The data were measured in a region with
known prevailing winds from the east and predominantly the northeast.
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uring locations was used. As part of the pre-processing of the data, the data were 
resampled to ten seconds; the night hours were removed based on a solar elevation angle 
with a threshold of 5° (to keep sunrise and sunset information). The GHI time series was 
normalised using the clearness index (calculated with k(t) = GHI/I0, where I0 is the extra-
terrestrial irradiance on the horizontal surface, at a t moment). 

As for the ML models considered, three popular algorithms were selected as follows: 
(1) the RF regression model [4] forms a combination of predictor trees, the prediction de-
livered being formed by taking the mean of k trees; (2) the XGBoost model [5] is the im-
plementation of the gradient boosting decision tree model that creates the trees sequen-
tially, allowing learning from errors in the previous step (unlike RF, which creates the 
trees in parallel); and (3) the LightGBM model [6] is an optimisation of the XGBoost model 
that speeds up the training time by almost twenty times with similar accuracy levels. 
Therefore, the RF model is an example of a bagging ensemble model, while XGBoost is a 
boosting ensemble model. LightGBM is an optimisation of the XGBoost model with al-
most the same degree of certainty in its predictions. 

As for the experimental design, an analysis of the influence of including the zonal 
component and meridional component was performed. The zonal component, referred to 
as ݑ, is the horizontal velocity component along a circle of latitude in a west to east direc-
tion, and the meridional component, referred to as ݒ, is the horizontal velocity component 
along a meridian from south to north. The problem can be defined as follows: multiple 

Figure 1. Spatial distribution of irradiance measuring locations (from the Oahu solar measurement
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In the initial analysis of the data, the information from the ap3 measuring location was
removed due to missing data; only the information from the remaining sixteen measuring
locations was used. As part of the pre-processing of the data, the data were resampled to ten
seconds; the night hours were removed based on a solar elevation angle with a threshold of
5◦ (to keep sunrise and sunset information). The GHI time series was normalised using the
clearness index (calculated with k(t) = GHI/I0, where I0 is the extraterrestrial irradiance on
the horizontal surface, at a t moment).

As for the ML models considered, three popular algorithms were selected as follows:
(1) the RF regression model [4] forms a combination of predictor trees, the prediction
delivered being formed by taking the mean of k trees; (2) the XGBoost model [5] is the
implementation of the gradient boosting decision tree model that creates the trees sequen-
tially, allowing learning from errors in the previous step (unlike RF, which creates the trees
in parallel); and (3) the LightGBM model [6] is an optimisation of the XGBoost model that
speeds up the training time by almost twenty times with similar accuracy levels. Therefore,
the RF model is an example of a bagging ensemble model, while XGBoost is a boosting
ensemble model. LightGBM is an optimisation of the XGBoost model with almost the same
degree of certainty in its predictions.

As for the experimental design, an analysis of the influence of including the zonal
component and meridional component was performed. The zonal component, referred to
as u, is the horizontal velocity component along a circle of latitude in a west to east direction,
and the meridional component, referred to as v, is the horizontal velocity component along
a meridian from south to north. The problem can be defined as follows: multiple GHI
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series
{

G1, · · · , Gd
}

, where d is the number of irradiance measuring locations, and each G
represents a time series from specific measuring locations; the model inputs are registries
from the OIH dataset as

{
Gp(t − l), u, v

}
; l represents the number of lags, l ∈ {1, · · · , n},

p is the number of series, p ∈ {1, · · · , d}, u is the zonal component, v represents the
meridional component, while Gk(t) is the target of the model for the kth measuring location.

The considered models were implemented in the scikit-learn library [7] and trained using
the “GridSearch cross validation” function. During training, the hyperparameters optimised
for XGBoost and LightGBM were the learning rate, lr; lr ∈ [0.001, 0.01, 0.1, 0.15, 0.3, 0.45],
and the maximum depth, md; md ∈ [5, 10, 15, 20, 25], with the optimised lr being 0.1 and
10 and the optimised md being 0.1 and 15 for XGBoost and LightGBM, respectively. The
considered hyperparameters for RF were the minimum number of leaves, nl, and the
number of estimators, ne; nl, ne ∈ [100, 150, 200, 250, 300], with the optimised nl, ne
values being 0.01 and 150, respectively. All models were trained using the spatiotemporal
approach (considering the lags of the neighbours) in two training scenarios (where the
wind components are provided, and vice versa). The performance of the models trained
with and without the inclusion of wind variables was evaluated with popular performance
metrics applied to assess the accuracy of the regression models, namely, the mean absolute
error (MAE), the root mean squared error (RMSE), and the forecast skill (FS) score.

3. Results and Discussion

We start with an analysis of the variability being captured and then show the results
obtained by the three algorithms. In Figure 2, an example of the spatial and temporal
context of the solar variability shows that, when two locations are taken on a given cloudy
day, the observed GHI values can vary greatly with changes in the sun’s geometry and
cloud movement.
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Figure 2. GHI values obtained from the measuring locations ap7 (blue) and dh5 (orange) on a cloudy
day (15 August 2010) for (a) the complete day, and (b) a thirty-minutes interval (starting at 13:00
hour). Note: Figure 2b shows drops in the GHI values produced by the clouds, which can be observed
minutes later in another measuring location found in the direction of the prevailing wind.

A comparison of the evaluated metrics obtained by the considered ML models is
presented in Table 1. It can be observed that all models evaluated improved their FS score
with the inclusion of wind components. XGBoost was the best performer, with an average
FS score of 27.63% for all measuring locations. LightGBM achieved an average FS score of
26.50%, while RF obtained an average FS value of 12.07%.
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Table 1. Mean performance metrics obtained by the models trained using the spatiotemporal
approach for all measuring locations (grouped by the inclusion of wind data information).

Wind Variables Considered No Wind Variables Considered

Model MAE
(W/m2)

RMSE
(W/m2)

FS Score
(%)

MAE
(W/m2)

RMSE
(W/m2)

FS Score
(%)

RF 27.46 70.13 12.07 29.19 71.32 10.57
LightGBM 22.03 58.60 26.50 23.05 59.41 25.49
XGBoost 20.63 57.70 27.63 21.20 58.31 26.87

As found in Figure 3, the measuring locations with the highest FS scores are those that
have the largest number of neighbours in the direction of the wind. In the ap7, ap4, and
ap5 measuring locations, wind variables had less influence on the outcome and featured
the lowest FS values. In the dh3, dh4, dh6, and dh10 measuring locations, the results were
further improved by the introduction of wind components and displayed the best FS scores.
The experiments demonstrate that the inclusion of wind components can improve the
prediction results.
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Figure 3. Forecast skill score of the XGBoost model for all the measuring locations (with and without
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4. Conclusions

In this work, the influence of introducing the zonal and meridional wind components
as input variables for the ML models was analysed. The study employed three tree-based
algorithms for solar radiation forecast, using on OIH dataset trained using a spatiotemporal
approach by including lags from neighbouring measuring stations in scenarios where
wind and no wind data were used as input. The results demonstrate that using the wind
components as input variables delivered an average improvement of approximately 1% in
the FS value over the training scenario without wind data.

This implies that, although wind data are not highly correlated with solar radiation,
they can indicate cloud movement and other atmospheric conditions and become an
effective predictor of solar radiation. For future research, (1) fewer characteristics could be
studied by including only the lags of neighbours in the predominant wind direction, and
(2) more complex models such as those provided by deep learning implementation should
be considered.
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