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Abstract: This study analyzes repercussions for the morphology, talweg, riverbanks and surrounding
structures of several aquatic systems transformed by multipurpose reservoirs located within the
Ecuadorian territory of South America. For this purpose, several geomatics techniques were used
simultaneously, minimizing the temporal error in the reservoir water level in order to measure the
impact of partial or total emptying operations on these reservoirs. High precision geodetic networks
were designed to synchronously use geospatial data-capturing equipment, namely UASs/drones
with INS/GNSS systems, LiDAR sensors, RGB optical sensors, USVs/aquatic drones equipped
with GNSS systems, and single-beam sensors. Photogrammetric, LiDAR and underwater results
were contrasted with topographic techniques used in the monitoring and control of structures.
Environmental changes in the surroundings, soil movements due to sedimentary and erosive effects,
and possible displacements in existing structures were analyzed.

Keywords: UASs/USVs/drones; hydrotechnical structures; echo sounders; LiDAR

1. Introduction

Although technological advances and the current use of airborne LiDAR–bathymetric
(ALB) or hydrographic LiDAR (ALH) data acquisition methods allow for high scanning
speeds and simultaneous data mixing on dry and wet surfaces, they also bring accuracy
disadvantages for high-altitude rivers, due to problems with water clarity and turbidity [1],
which are closely linked to suspended particles; in this context, an echo sounder will
produce better results.

From existing techniques, RGB photogrammetric methodologies are adopted to cap-
ture the limits of the hydro-technical works, corroborate the water mirrors and shorelines
of the reservoirs, and provide a complete interpretation of all the surveyed data.

From this multidisciplinary process results the geometric characterization of the dry
and underwater areas of the environment as a main source for understanding changes
in geomorphological and morphodynamic processes [2,3] that mainly influence adjacent
structures, erosion risk, sedimentation, and potential river restoration [4].

2. Materials and Methods
2.1. Study Area

The study took place in 4 reservoirs (Figure 1) within the continental waters of Ecuador.
These reservoirs have multiple purposes whose common axis is to provide hydroelectricity;
they are differentiated by their storage volume, regulation (daily, monthly and annual),
and by their geographic location, which has a substantial influence on climatic elements; in
Ecuador, these locations are defined by three well individualized continental regions: the
Coast, Highlands and Amazon.
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In general terms, relief modifies rainfall. the higher the altitude, the lower the atmos-

pheric pressure. The higher the solar radiation, the greater the change in wind trajectory, 

and the air forced to rise tends to cool down. The data to be taken into account for the 

analysis of the accuracy of the measurements were obtained with sensors onboard 

UASs/drones. 

 

Figure 1. Geographical location of the four case studies, which are located in different types of relief 

and climatic zones within Ecuador. 

Figure 1a shows the hydrographic demarcation of Ecuador with the 4 reservoirs stud-

ied. The Baba reservoir (Figure 2b), with a flooded area of 1032 hectares, generates 42 MW. 

The Compensador reservoir (Figure 1c), with a volume of 800,000 m3, and the intake res-

ervoir (Figure 1d) belong to the Coca Codo Sinclair project, which generates 1500 MW. 

And the Manduriacu reservoir (Figure 1e), with a reservoir area of 70.50 hectares, gener-

ates 65 MW. 
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Figure 2. Hydrographic system: (a) shore control base; (b) echo sounder connections. 

2.2. Materials 

2.2.1. USV/Drone Echo Sounder System 

For the underwater data survey [5–7], a Z-BOAT 1800 HS marine drone was used 

with an ECHOTRAC CV100 DUAL dual-frequency (100–340 Khz and low 24–50 Khz) 

echosounder, ethernet communications, GNSS-RTK, motion and velocity sensors, a depth 

range from 30 cm to 60 0m, and accuracy of 0.01 m ± 0.1%. A land control center with a 

device manager computer and hydrographic data collector + GNSS RTK (Figure 2) was 

installed for real-time visualization of survey status. 

Figure 1. Geographical location of the four case studies, which are located in different types of relief
and climatic zones within Ecuador.

In general terms, relief modifies rainfall. the higher the altitude, the lower the atmo-
spheric pressure. The higher the solar radiation, the greater the change in wind trajectory,
and the air forced to rise tends to cool down. The data to be taken into account for the analy-
sis of the accuracy of the measurements were obtained with sensors onboard UASs/drones.

Figure 1a shows the hydrographic demarcation of Ecuador with the 4 reservoirs
studied. The Baba reservoir (Figure 2b), with a flooded area of 1032 hectares, generates
42 MW. The Compensador reservoir (Figure 1c), with a volume of 800,000 m3, and the
intake reservoir (Figure 1d) belong to the Coca Codo Sinclair project, which generates
1500 MW. And the Manduriacu reservoir (Figure 1e), with a reservoir area of 70.50 hectares,
generates 65 MW.
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2.2. Materials
2.2.1. USV/Drone Echo Sounder System

For the underwater data survey [5–7], a Z-BOAT 1800 HS marine drone was used
with an ECHOTRAC CV100 DUAL dual-frequency (100–340 Khz and low 24–50 Khz)
echosounder, ethernet communications, GNSS-RTK, motion and velocity sensors, a depth
range from 30 cm to 60 0m, and accuracy of 0.01 m ± 0.1%. A land control center with a
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device manager computer and hydrographic data collector + GNSS RTK (Figure 2) was
installed for real-time visualization of survey status.

2.2.2. LiDAR and RGB UAS/Drone System

The UAS/drone system (Figure 3) is composed of two main components: one on-
board and one on the ground. The on-board components of the Matrice 600 Pro aircraft
(DJI, Shenzhen, China) are a Riegl miniVUX-1UAV sensor (RIEGL, Horn, Austria), which is
a 5-pulse ALS (airborne laser scanner) [8,9] (@ 100 kHz PRR & 360◦ FOV); an INS/GNSS
inertial system with a heading RMS accuracy of 0.009◦/0.019◦, operating in RTK, PPP and
PPK modes; and a 42.4 MP Sony Alpha A7RII RGB camera (Sony Corporation, Minato,
Japan). On the other hand, the ground components are a computer synchronized with
onboard components that manages the flight and displays the collected data in real time,
and a GNSS receiver as a ground base.
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Figure 3. Aerial system: (a) ground control; (b) INS/GNSS LiDAR/RGB system on Matrice
600ProRTK.

2.3. Survey Methodology

Due to the inherent conditions of each reservoir, High precision geodetic networks
were designed to allow the possibility of linking all the sensors together for the survey pro-
cesses, allowing continuous monitoring of the water levels of each reservoir and avoiding
corrections that we coined pseudotides.

In general, for each reservoir, navigation was planned with the help of satellite of
1:5000 cartography images from the Military Geographic Institute of Ecuador (IGM). The
bathymetric survey [5,10] at 5 km/h and the photogrammetric and LiDAR survey at
25 km/h were performed simultaneously, and to reduce the drift error, the distance was
limited to 5 km.

Finally, once the data were post-processed and the digital fusion models of all bathy-
metric and laser data combined with photogrammetric data [11] were generated, moni-
toring and topographic control measurements were performed to verify the accuracies
achieved in all survey processes and products.

2.4. Obtaining Wet and Dry Digital Surface Models

The trajectories (Figure 4) were processed with two computing algorithms: tightly
coupled (tC) and loosely coupled (lC), with the TC method being more efficient, with
accuracies below the maximum permissible ±2 cm in position and ±2 arcmin in attitude.
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The adjusted and refined LiDAR and photogram data were classified and orthorecti-
fied, respectively, while the refined bathymetric data were finally reduced and merged to
generate a single underwater and dry surface model.

3. Results

The post-processing accuracies of trajectories did not exceed 0.2 arcmin for attitude
values and 0.002 m for positional displacements.

With the on-the-ground topographic control campaigns of the structures and surround-
ing slopes, several monitoring areas were quantified for quality control within the digital
terrain models, obtaining results with accuracies of 2 cm horizontally and 2.5 cm vertically.

For the bathymetric surveys, the position and depth data gave a confidence level of
95%, i.e., a special order survey according to the standards established in the IHO. The
final accuracy of the residual analysis was 0.03 m ± 0.1%, checked with control topography
along the concrete structure referred to as a deflector.

This procedure resulted in calculations of accumulated water volumes; three-dimensional
models of sediment outflow and transport; and one-dimensional hydraulic models for
water transfers, localized sediment volumetry, and erosive processes (Figure 5).
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Figure 5. Impact on the reservoirs: (a) erosion zones of the BABA reservoir; (b) three-dimensional
model of sediment accumulation and sediment removal in the Manduriacu reservoir.

4. Conclusions

There is a considerable difference between the volumes of water designed and those
verified in the field (−30% on average), so there is a high level of sedimentation in these
reservoirs, reducing their life span considerably.

Submeter movements in subsea structures (e.g., displacement found in baffle slabs)
can be monitored to control thrust forces caused by reservoir operation.

For reservoirs located on mountain rivers, it is necessary to generate water level control
models that monitor changes in height and pseudotides and incorporate them into transect
adjustment calculations to avoid deviations in bathymetric data.

The increase in turbidity downstream of dams is a harmful effect that is directly pro-
portional to the amount of sediment removal through the floodgates required to maintain a
useful volume in reservoirs; therefore, the design of hydro-technical works must integrate
sediment and slope-monitoring manuals upstream, within, and downstream of reservoirs.

The indiscriminate increase in the operating velocities of reservoirs in high-altitude
rivers aggressively and progressively erodes inland slopes, directly affecting their structural
integrity and the adjacent aquatic and environmental surroundings.

Author Contributions: Conceptualization, Á.M.S., S.L.-C.; Investigation, Á.M.S. Methodology,
Á.M.S., S.L.-C. and J.F.P.; Software, Á.M.S.; Supervision, S.L.-C. and J.F.P.; Writing—original draft,
Á.M.S.; Writing—review and editing, Á.M.S., S.L.-C. and J.F.P. All authors have read and agreed to
the published version of the manuscript.
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