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Abstract: On the basis of a long-term analysis (2013–2021), we report the inter-annual and seasonal
concentrations and possible sources of trace elements (TEs) in PM2.5 over Delhi, India. In all the
PM2.5 samples, 19 major and trace elements were extracted: Na, Al, Fe, Ti, Mg, Cu, Zn, Cr, Mn, Ni,
As, Mo, Cl, P, S, Ca, K, Pb, and Br. The total annual mean concentration (∑El in PM2.5) of major and
trace elements was 17.4 ± 3.1 µg m−3, accounting for 13.9% of PM2.5. The enrichment factor (EF)
and IMPROVE model analysis indicate the seasonal abundance of mineral/soil dust (Fe, Al, Ti, Na,
Ca, and Mg) at the sampling location of Delhi. During the sampling period, the highest loading of
trace elements was recorded in 2015 (19% of PM2.5) and the lowest in 2020 (9% of PM2.5), possibly
due to limited activity during COVID-19 lockdown/unlock times. The major sources of elements (in
PM2.5) were extracted by a principal component analysis (PCA) as crustal/soil/road dust, vehicular
traffic/industrial emissions, combustion (solid + fossil fuels), and sodium magnesium salts in Delhi.

Keywords: PM2.5; trace elements; enrichment factor; source of elements

1. Introduction

Trace elements (TEs) contribute a small fraction to fine mode particulate matter (PM)
in comparison to other chemical species (organic and inorganic) and affect the quality of
ambient air and human well-being [1–3]. Apart from natural sources, particulate-bound
major and trace elements emit from various anthropogenic activities such as dust particles
(crustal, long-range transportation, and construction activities); the combustion of fuels
(biomass and fossil fuels); industrial and vehicular emissions, etc. [3–6]. Majorly, PM-bound
elements are non-volatile in nature and are not affected by their transportation to or from
local or other regions [1,2,5–8]. Previous studies [2,7,8] report that the inhalation of elements
like Zn, As, Fe, Hg, Mn, Pb, Cu, Cr, and Ni, which can be emitted from diverse sources,
has detrimental effects (poisonous and mutagenic) on human well-being. In this paper, we
report the annual and seasonal composition of elements and their possible sources of PM2.5
in the megacity of Delhi, India, on a long-term basis.

2. Materials and Methods

Delhi, the capital city of India, is considered one of the most polluted cities in India
and the world [9]. For the long-term assessment of the elemental composition of PM2.5,
fine particulate samples (PM2.5) were collected at the CSIR–National Physical Laboratory
(28◦38′ N, 77◦10′ E; 218 m amsl), New Delhi, from January 2013 to April 2021. Delhi
experiences four distinct seasons (classified by the India Meteorological Department):
winter (January–February; JF), summer (March–May; MAM), monsoon (June–September;
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JJAS), and post-monsoon (October–December; OND). In our previous publication [10], the
sampling location is described in detail.

PM2.5 samples (n = 756) were collected on pre-baked quartz filters for up to 24 h
by a fine particle sampler operated at a flow rate of 1 m3 h−1 (accuracy: ±2% of FS). A
Wavelength-Dispersive X-ray Fluorescence Spectrometer (WD-XRF; ZSX Primus, Rigaku,
Tokyo, Japan) was employed to identify 19 elements (Na, Al, Fe, Ti, Br, Cu, Zn, K, Mn,
Cr, Ni, Mo, Mg, Cl, P, S, Pb, As, and Ca) in all the PM2.5 samples (Mo and Ni were
traced in few PM2.5 samples). Detailed information about the estimation of elements,
the working principle of the instrument, and the calibration standards used are available
in Sharma et al. [3]. A principal component analysis (PCA) was applied to examine the
possible sources of elements in Delhi.

3. Results and Discussion

The annual mean concentrations of PM2.5 are depicted in Figure 1, and the time-series
plots of major and trace elements of PM2.5 are presented in Figure 2a,b. The mean annual
concentration of PM2.5 was 127 ± 58 µg m−3 with a maxima of 143 ± 70 µg m−3 (in 2017)
and a minima of 109 ± 53 µg m−3 (in 2021) during the entire sampling period. The non-
significant decreasing trend (y = −1.63x + 133.9; R² = 0.15) in annual concentrations of PM2.5
was observed from 2013–2021. The annual mean concentrations of PM2.5 was recorded
more than three times that of National Ambient Air Quality Standards (NAAQS, annual
level: 40 µg m−3). Out of the 19 elements, the higher concentrations of major elements
such as K, Al, Fe, Ca, Na, Mg, and S in PM2.5 were recorded in Delhi. Other studies also
reported similar observations [1,5,10–14]. The highest loading of elements was recorded in
2015 (19% of PM2.5), and the lowest in 2020 (9% of PM2.5) might be due to limited activity
during COVID-19 lockdown/unlock times. The total concentrations (∑El) of elements in
PM2.5 accounted for 13.9% of PM2.5 during 2013–2021 in Delhi. Similar observations were
reported by Jain et al. [10] and Rai et al. [1] with a 17% and 19% contribution of elements in
PM2.5 over Delhi.
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Figure 1. Annual mean concentrations of PM2.5 in Delhi, India.

Seasonal elemental concentrations (Al, Fe, Ti, Cu, As, Zn, Mn, Cr, Ni, P, Mo, Na,
Mg, Cl, S, K, Pb, Br, and Ca) of PM2.5 are depicted in Figure 3, whereas the seasonal
percentage contribution of elements in PM2.5 is illustrated in Table 1. The percentage of
elements contributing to PM2.5 during the winter, summer, monsoon, and post-monsoon
seasons was computed as 12.9%, 16.9%, 16.6%, and 11.7%, respectively. A higher loading
of elements in PM2.5 during the summer (16.9%) and monsoon (16.6%) seasons is due to
occasional dust storms, higher wind speeds, and long-distance transit of pollutants from
the Thar desert and neighboring areas to the receptor site of Delhi [4,15,16]. The higher
loading of Al, Fe, Ti, Ca, and Na in PM2.5 found during all the seasons at the sampling
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site is attributable to mineral/soil dust [14–16]. During the post-monsoon season, a higher
concentration of Cl was found, which could be attributed to the combustion of coal and the
burning of wood, plastic, paper, diesel fuels, etc. [14,17,18].

Environ. Sci. Proc. 2023, 27, 11 3 of 6 
 

 

desert and neighboring areas to the receptor site of Delhi [4,15,16]. The higher loading of 

Al, Fe, Ti, Ca, and Na in PM2.5 found during all the seasons at the sampling site is attribut-

able to mineral/soil dust [14–16]. During the post-monsoon season, a higher concentration 

of Cl was found, which could be attributed to the combustion of coal and the burning of 

wood, plastic, paper, diesel fuels, etc. [14,17,18].  

 
(a) 

 
(b) 

Figure 2. (a). Time-series plots of major elements present in PM2.5 in Delhi from 2013–2021.
(b). Time-series plots of trace elements present in PM2.5 at Delhi from 2013–2021.



Environ. Sci. Proc. 2023, 27, 11 4 of 6

Environ. Sci. Proc. 2023, 27, 11 4 of 6 
 

 

Figure 2. (a). Time-series plots of major elements present in PM2.5 in Delhi from 2013–2021. (b). Time-

series plots of trace elements present in PM2.5 at Delhi from 2013–2021. 

Table 1. Total elemental concentrations (∑El) of PM2.5 (in µg m−3) in Delhi, India. 

Parameters 
Winter  

(JF)  

Summer 

(MAM)  

Monsoon 

(JJAS)  

Post-monsoon 

(OND)  

Total elements ∑El 20.4 ±2.5 15.5 ± 1.5 11.2 ± 1.6 22.3 ± 2.3 

PM2.5 158 ± 70 92 ± 44 67 ± 32 192 ± 110 

% of ∑El in PM2.5 12.9% 16.9% 16.6% 11.7% 

± standard variation. 

 

Figure 3. Pooled seasonal mean concentrations (2013–2021) of major and trace elements (TEs) in 

PM2.5 during all seasons in Delhi. 

For the source apportionment of PM2.5, a PCA was used and identified the five 

sources of PM2.5 in Delhi. During all the seasons, the heavy loading of crustal elements 

(Al, Na, Ca, Ti, Fe, and Mg) indicated crustal/soil/road dust as the first factor of PM2.5. An 

IMPROVE model analysis and EFs suggest an abundance and crustal origin of these ele-

ments (Al, Na, Ca, Fe, Ti, and Mg) [16,19]. The second factor extracted the combustion 

source (biomass burning + fossil fuel combustion) of PM2.5 due to the substantial loading 

of K, S, and Cl [3,17,18]. The third factor indicated the relatively heavy loading of Pb, Cu, 

Mn, and Zn and was extracted as a source of vehicular emissions (VEs) [4,16,20]. The 

fourth factor of PM2.5 was examined as industrial emissions (IEs) due to the elevated load-

ing of Cr, Cu, Zn, Ni, Fe, Br, and Ti [10,21,22]. The fifth factor of PM2.5 was resolved as soil 

dust + VEs + IEs [10,19]. 

4. Conclusions 

This paper presents the seasonal, long-term annual concentrations and sources of 

major & trace elements in PM2.5 over Delhi, India. During the entire study period, 19 ele-

ments (Na, Mg, Ca, Mn, Al, Fe, Ti, Cu, Zn, Cr, Ni, As, Mo, Cl, P, S, K, Pb, and Br) were 

extracted from PM2.5 samples, which accounted for 13.9% of the PM2.5 mass concentration 

(127 ± 58 µg m−3). An IMPROVE model analysis implies the seasonal accumulation of soil 

dust (SD) in the sampling location of Delhi. Crustal/soil/road dust, vehicular traffic/indus-

trial emissions, combustion (solid + fossil fuels), and sodium magnesium were resolved 

as the major sources of elemental concentrations of PM2.5 in Delhi. This long-term study 

on the elemental composition of PM2.5 will be useful for policymakers in mitigating and 

improving the ambient air quality and human health.  

Figure 3. Pooled seasonal mean concentrations (2013–2021) of major and trace elements (TEs) in
PM2.5 during all seasons in Delhi.

Table 1. Total elemental concentrations (∑El) of PM2.5 (in µg m−3) in Delhi, India.

Parameters Winter
(JF) Summer (MAM) Monsoon (JJAS) Post-Monsoon

(OND)

Total elements ∑El 20.4 ±2.5 15.5 ± 1.5 11.2 ± 1.6 22.3 ± 2.3
PM2.5 158 ± 70 92 ± 44 67 ± 32 192 ± 110

% of ∑El in PM2.5 12.9% 16.9% 16.6% 11.7%
± standard variation.

For the source apportionment of PM2.5, a PCA was used and identified the five sources
of PM2.5 in Delhi. During all the seasons, the heavy loading of crustal elements (Al, Na, Ca,
Ti, Fe, and Mg) indicated crustal/soil/road dust as the first factor of PM2.5. An IMPROVE
model analysis and EFs suggest an abundance and crustal origin of these elements (Al, Na,
Ca, Fe, Ti, and Mg) [16,19]. The second factor extracted the combustion source (biomass
burning + fossil fuel combustion) of PM2.5 due to the substantial loading of K, S, and
Cl [3,17,18]. The third factor indicated the relatively heavy loading of Pb, Cu, Mn, and
Zn and was extracted as a source of vehicular emissions (VEs) [4,16,20]. The fourth factor
of PM2.5 was examined as industrial emissions (IEs) due to the elevated loading of Cr, Cu,
Zn, Ni, Fe, Br, and Ti [10,21,22]. The fifth factor of PM2.5 was resolved as soil dust + VEs +
IEs [10,19].

4. Conclusions

This paper presents the seasonal, long-term annual concentrations and sources of
major & trace elements in PM2.5 over Delhi, India. During the entire study period,
19 elements (Na, Mg, Ca, Mn, Al, Fe, Ti, Cu, Zn, Cr, Ni, As, Mo, Cl, P, S, K, Pb, and
Br) were extracted from PM2.5 samples, which accounted for 13.9% of the PM2.5 mass
concentration (127 ± 58 µg m−3). An IMPROVE model analysis implies the seasonal
accumulation of soil dust (SD) in the sampling location of Delhi. Crustal/soil/road dust,
vehicular traffic/industrial emissions, combustion (solid + fossil fuels), and sodium magne-
sium were resolved as the major sources of elemental concentrations of PM2.5 in Delhi. This
long-term study on the elemental composition of PM2.5 will be useful for policymakers in
mitigating and improving the ambient air quality and human health.
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