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Abstract: In this study, we present the preliminary results of our effort to construct a new high
spatial resolution precipitation database (1 km × 1 km) over Greece, on an annual and monthly
basis. A variety of spatial parameters (i.e., latitude, longitude, altitude, aspect, distance from water
bodies, among others) and ERA5 reanalysis data were used as independent variables in an algorithm
combined with the Regression Kriging with a Histogram-Based Gradient-Boosting Regression Tree.
The dependent variable in the algorithm was the gauge data covering most of the area studied.
Maps were constructed for the ERA5 reanalysis and the modelled mean precipitation totals on an
annual and monthly basis for the 1980–2010 study period. The findings of the analysis show that
the applied methodology improves the spatial resolution and distribution of the ERA5 reanalysis
precipitation totals over Greece. Furthermore, when comparing the modelled high spatial resolution
datasets against ERA5 datasets over the gauge precipitation totals, the model achieved an average R2

improvement of 31.7%, with the largest improvement recorded on an annual basis, while the RMSE
decreased by 16.6% on average and more than 40% on an annual basis.

Keywords: precipitation; downscaling; ERA5 reanalysis; Regression Kriging; Regression Tree; Greece;
complex terrain

1. Introduction

Precipitation in Greece exhibits very high spatial variability, as documented by many
researchers in this field [1,2]. Greece is defined by the Pindos Mountain range, where
the bulk of precipitation occurs. The mountain range gives precipitation in Greece a
longitudinal shift [3], while the many small islands make precipitation even harder to
simulate. The greater Mediterranean area also experiences a lot of extreme precipitation
events [4] in the winter and a lot of droughts in the summer [5]. This high inter-seasonal
variability also creates additional issues with simulating the precipitation, particularly in
the spring and summer months since, precipitation is extremely rare.

Currently, the ERA5 datasets are given at a spatial resolution of 0.25◦ × 0.25◦. This
makes the datasets unsuitable to study precipitation in Greece, as precipitation can change
a lot within such a large grid cell. In particular, spatial precipitation variabilities regarding
small islands cannot be fully interpreted. The aim of this paper is to downscale the ERA5
precipitation totals on an annual and monthly basis, on a 1 km × 1 km spatial resolution,
over the Greek area.

2. Materials and Methods

The ERA5 reanalysis data use the same Integrated Forecasting System that was used
in the ERA Interim Reanalysis, but correcting the biases that were found. The data are
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given on a 0.25◦ × 0.25◦ grid, and this is the reanalysis input used to downscale the
precipitation totals. Towards this goal, the constructed model based on Regression Kriging
with a Histogram-Based Gradient-Boosting Regression Tree was fed with geographical
parameters derived from a 12 m resolution TanDEM-X Elevation Model, which is a product
generated from the TerraSAR-X satellite mission. This raster was upscaled to 1 km × 1 km
and then the geographical parameters were calculated for each station. The shapefiles used
to calculate the distance from shore and water bodies like lakes and rivers were acquired
from the government platform https://geodata.gov.gr/ (accessed on 22 September 2022).
The daily precipitation totals, the elevation of the precipitation gauges and their coordinates
were provided from the Hellenic National Meteorological Service (HNMS). A total of
103 precipitation gauges were used, covering most of the Greek mainland, as well as the
islands. The study period refers to 1980–2010, and this is primarily since the reanalysis
datasets were given for this period. For the stations studied, 77.7% of the gauge dataset
has more than 50% of the data for the period studied, 67% has more than 70% of the data,
while 40.8% has more than 90% of the data.

The constructed regression model used as independent variables the climatic elements
from ERA5 reanalysis datasets (air temperature, wind speed, evaporation, surface solar
radiation, surface pressure, cloud cover, precipitation); the geographical variables from the
gauge position (longitude, latitude, elevation); the geospatial variables (distance from lakes,
distance from river, distance from shore, slope) from the high resolution 1 km × 1 km Greek
domain; and the North Atlantic Circulation index (NAOI) (Table 1). The independent vari-
ables entered in the statistical downscaling model to achieve optimal results for each month
are presented in Table 1. These variables were chosen based on statistically significant
correlation (p < 0.05) with the precipitation datasets (dependent variable), along with a trial-
and-error analysis, during the training stages of the model. The training dataset consisted
of the 90% precipitation totals (dependent variable) for each one of the gauges used in the
study along with the aforementioned independent variables. The used climate elements
from the ERA5 reanalysis datasets concerned the nearest cell to the gauge. The validation
of the model was based on a random split of 10% of the gauge precipitations totals.

Table 1. Table of independent variables used in each month (grey colour).

Variables January February March April May June July August September October November December Annual
Date

Longitude
Latitude
Elevation
Distance

from Lake
Distance

from Shore
Slope
NAO

Distance
from River

Wind Speed
Temperature
Evaporation

Surface
Solar

Radiation
Surface
Pressure

Total
Precipitation
Cloud Cover

The statistical downscaling approach used in the study was the Regression Kriging
with a Histogram-Based Gradient-Boosting Regression Tree (HBGBRT), which is a spatial
interpolation technique, where the residuals from a regression model are spatially interpo-

https://geodata.gov.gr/
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lated using a Kriging technique. The regression model is usually a linear or multilinear
model; however, we used a more complex HBGBRT. Gradient Boosting is an ensemble
machine learning technique where a tree model is added to a previous tree model en-
semble to correct the prediction errors. An HBGBRT technique essentially means that the
model is using a histogram approach to categorise the input data and train the trees on
the most optimal set of input variables. This technique was used to accelerate the training
process dramatically.

3. Results and Discussion

Table 2 summarises the improvements that were made (R2 and RMSE) in the resulting
high-resolution precipitation totals compared with the standalone reanalysis data. It is
obvious that the newly generated High-Resolution PREcipitation totals (HRPRE) show
massive improvement over the original ERA5 reanalysis datasets. The only exception
appears in some spring and summer months, where the model does not improve the
original ERA5 reanalysis datasets. This shortcoming in accuracy probably happens because
the precipitation is very scarce (even zero) in most of these months. Additionally, the best-
performing results concern annual precipitation against monthly precipitation, which is
due to the scarcity of precipitation even in January or December in specific areas of Greece.

Table 2. Statistic metrics, on the one hand, between the generated HRPRE and the gauge precipitation
totals and, on the other hand, between ERA5 datasets (nearest to the gauge cell) and the gauge
precipitation totals.

R2 RMSE

Month HRPRE ERA5 HRPRE ERA5

January 0.63 0.44 45.20 59.52
February 0.65 0.42 38.01 51.03

March 0.53 0.41 35.35 43.96
April 0.58 0.51 25.30 29.04
May 0.40 0.47 22.79 23.23
June 0.42 0.34 15.69 20.04
July 0.49 0.50 15.61 16.61

August 0.35 0.35 17.47 19.68
September 0.51 0.46 22.46 24.05

October 0.49 0.46 41.74 45.41
November 0.46 0.33 60.85 69.00
December 0.63 0.40 56.44 75.52

Annual 0.70 0.28 156.88 266.86

In the following Figures 1–5, the spatial distributions of annual and mean monthly
precipitation totals for selected months of the generated HRPRE and ERA5 datasets are
presented for the period 1980–2010 over Greece. The generated annual HRPRE and ERA5
datasets correctly simulate (Figure 1), the longitudinal shift that exists in the Greek region
because of the Pindus Mountain range. Additionally, the model performs much closer to
ERA5; however, the values seem to be smaller. This could be since most of the stations
used are at low elevations. Additionally, Crossett et al. [6] also found that the model
overestimated the precipitation on an annual basis. However, in the Crete region, where a
lot of stations at high elevations are included, the downscaled data show an increase in the
mountainous regions.
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Summer months are the worst performing; namely, the precipitation in these months 
usually exists only in the northern parts of the country. Table 1 depicts that fewer inde-
pendent variables appear to be included in the model with respect to summer months. 
Furthermore, the inter-seasonal variability is something in which models usually reach 
their limits in the region, as in some areas very heavy precipitation falls in some winter 
months and virtually no precipitation falls in summer. This is obvious in Crete, where, 
during winter, the mountainous regions record some of the highest precipitation in the 
country against very little precipitation within the summer period. Additionally, in Crete 
the downscaled data simulate much higher precipitation in the mountainous region and 
do not simulate the very pronounced longitudinal shift that ERA5 simulates. The short-
coming of the ERA5 in Crete is probably due to its coarser resolution, which does not help 
in simulating the mountainous regions of the island. 

From the results, we can remark that the ERA5 is driving the predictions made by 
the HRPRE model. However, this is to be expected, as most of the parameters used in the 
model were derived from the ERA5 dataset. From the metrics used when comparing the 
HRPRE with the ERA5, we can see that the HRPRE does increase the accuracy of the 
ERA5, and the maps produced further validate the model, as it does follow the basic pat-
terns that exist in the Greek region. Additionally, it is clear the benefits from the higher 
resolution as the different geomorphologies are more accurately mapped. In high 
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Summer months are the worst performing; namely, the precipitation in these months
usually exists only in the northern parts of the country. Table 1 depicts that fewer inde-
pendent variables appear to be included in the model with respect to summer months.
Furthermore, the inter-seasonal variability is something in which models usually reach
their limits in the region, as in some areas very heavy precipitation falls in some winter
months and virtually no precipitation falls in summer. This is obvious in Crete, where,
during winter, the mountainous regions record some of the highest precipitation in the
country against very little precipitation within the summer period. Additionally, in Crete
the downscaled data simulate much higher precipitation in the mountainous region and do
not simulate the very pronounced longitudinal shift that ERA5 simulates. The shortcoming
of the ERA5 in Crete is probably due to its coarser resolution, which does not help in
simulating the mountainous regions of the island.

From the results, we can remark that the ERA5 is driving the predictions made by
the HRPRE model. However, this is to be expected, as most of the parameters used in the
model were derived from the ERA5 dataset. From the metrics used when comparing the
HRPRE with the ERA5, we can see that the HRPRE does increase the accuracy of the ERA5,
and the maps produced further validate the model, as it does follow the basic patterns that
exist in the Greek region. Additionally, it is clear the benefits from the higher resolution
as the different geomorphologies are more accurately mapped. In high elevation regions,
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more stations are needed to increase the accuracy and further test whether the model is
correct in reducing some of the precipitation simulated by the ERA5.

4. Conclusions

A high-resolution (1 km × 1 km) precipitation database (HRPRE) over Greece was
generated, using Regression Kriging with a Histogram-Based Gradient-Boosting Regres-
sion Tree. Towards this, a total of 103 precipitation gauges from the Hellenic National
Meteorological Service were used for the period 1980–2010. Climatic elements from ERA5
reanalysis datasets, geographical variables from the gauge positions, geospatial variables
from the high resolution 1 km × 1 km Greek domain and the North Atlantic Circulation
index were used as independent variables, while the dependent variables were the gauge
precipitation totals. The contribution of the ERA5 reanalysis climatic elements in the con-
structed regression model seems to be the main driver of the spatial precipitation pattern
change on both a monthly and annual basis. The results showed large improvement in
the statistic metrics (R2 and RMSE) between the generated HRPRE and the ERA5 datasets
(nearest to the gauge cell) over the Greek area. Overall, the algorithm tested seems to
be a good fit for creating precipitation datasets. Future research will concern extreme
precipitation indices focusing on daily precipitation totals.
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