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Abstract: Baroclinic instability is one of the main mechanisms for the formation of synoptic scale
systems. Previous studies examined the exponential growth of small perturbations for a stably strati-
fied troposphere in the case of a constant meridional temperature gradient ignoring the stratosphere
(Eady’s model). However, since stratospheric flow also affects to some extent the motions in the
troposphere, in this work we investigate the effect of stratospheric wind shear on baroclinic instability
using the tools of Generalized Stability Theory (GST). GST is a linear stability theory that addresses
both the exponential growth of perturbations that is pertinent in the large time asymptotic limit and
the transient growth of perturbations at finite time. The optimal initial perturbations leading to the
largest growth over a specified time interval are calculated for three main cases of stratospheric shear:
positive, zero and negative shear over the stratosphere. It is found that the inclusion of stratospheric
shear in all three cases decreases perturbation growth and influences the scale of the structures that
will dominate the flow. For optimizing times of the order of a week, the development of systems with
larger spatial scale compared to the prediction of the Eady model is expected, while for optimizing
times of the order of a day, smaller scale systems are found to develop.

Keywords: baroclinic instability; transient growth; stratospheric flow; generalized stability theory;
Eady model

1. Introduction

Baroclinic instability in the atmosphere is one of the main processes leading to the gene-
sis of synoptic scale systems. It exists due to meridional temperature gradients that support
a vertical shear of the mean flow through thermal wind balance. One of the commonly
used models for the study of baroclinic instability is Eady’s model [1], which describes the
evolution of small perturbations on a constant vertical wind shear in the quasi-geostrophic
limit. This model assumes that the perturbations extend only until the tropopause, ignoring
the stratospheric layer above along with the stratospheric flow. However, the stratospheric
circulation can affect the tropospheric dynamics as illustrated by recent studies showing
the downward propagation and tropospheric influence of stratospheric anomalies [2].

Previous studies have examined the effect of stratospheric flow on baroclinic instability
using the classical method of modal analysis [3,4], which is based on the identification of
eigenmodes of the linear dynamics that are growing exponentially. However, the drawback
of this analysis is that it examines the stability of the flow in the infinite time asymptotic
limit, where the exponential growth is the most rapid. Such a large time limit might not
be relevant for baroclinic instability, as cyclogenesis occurs over finite time periods of the
order of days.

In this work, we investigate the influence of the stratospheric flow on baroclinic insta-
bility using the tools of Generalized Stability Theory (GST) [5] that addresses perturbation
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growth over finite time scales regardless of whether this is exponential or algebraic. We
study a modified version of Eady’s model that is coupled with a stratospheric stably strati-
fied layer and study the influence of three cases of stratospheric shear (positive, zero and
negative) on baroclinic instability and on the finite time development of small perturbations.

2. The Evolution of Small Perturbations in the Quasi-Geostrophic Limit

In this work, we extend the classical Eady model to take into account the stably
stratified stratospheric layer and the flow therein. We consider an inviscid, adiabatic and
hydrostatically balanced flow on an f-plane in the quasi-geostrophic limit. In this limit, the
dynamics reduce to the conservation of potential vorticity:(

∂

∂t̃
+ ũg

∂

∂x̃
+ ṽg

∂

∂ỹ

)
q̃ = 0, (1)

where the tildes denote dimensional variables,
(
ũg, ṽg

)
is the geostrophic wind and q̃ is the

potential vorticity that is given by

q̃ = ∇̃2ψ̃ + f + f 2 ∂

∂z̃

(
1

Ñ2

∂ψ̃

∂z̃

)
, (2)

with ∇̃2 the horizontal Laplacian, ψ̃ the streamfunction, f the Coriolis parameter at the cen-
ter of the f-plane and Ñ(z̃) the Brunt–Väisälä frequency. A zonal flow

(
ũg, ṽg

)
=
(

Ũ(z̃), 0
)

,

with streamfunction Ψ̃ = −Ũ(z̃)ỹ is an equilibrium of the dynamics. The stability of this
flow is addressed by considering the evolution of small perturbations ψ̃ = Ψ̃ + ψ̃′. Sub-
stituting into (1) and linearizing the dynamics, we obtain the following non-dimensional
equation for the evolution of perturbations:(

∂

∂t
+ U(z)

∂

∂x

)[
∇2ψ′ +

∂

∂z

(
1

N2
∂ψ′

∂z

)]
+

d
dz

(
1

N2
dU
dz

)
∂ψ′

∂x
= 0. (3)

The vertical scales have been non-dimensionalized by the height of the troposphere H,
the horizontal scales by No H/ f , where No is a typical value of the Brunt–Väisälä frequency
in the troposphere, time is non-dimensionalized by the Coriolis parameter f and velocities
are non-dimensionalized by No H. The velocity and the temperature perturbations have to
be bounded away from the stratosphere, implying that the streamfunction is bounded for
z→ ∞ and the vertical velocity should be zero at the ground. From the thermodynamic
equation, this yields (

∂

∂t
∂ψ′

∂z
− ∂ψ′

∂x

)
z=0

= 0. (4)

We consider wave solutions of the form ψ′ = ψ̂(z, t)eik·x, where k = (K cos θ, K sin θ)
is the wavevector with amplitude K and θ is the angle between the lines of constant phase
of the waves and the meridional direction. The waves satisfy the equation:

∂ψ̂

∂t
= Aψ̂, (5)

with

A = iK cos θ

(
∂

∂z

(
1

N2
∂

∂z

)
− K2

)−1[ d
dz

(
1

N2
dU
dz

)
−U

(
∂

∂z

(
1

N2
∂

∂z

)
− K2

)]
. (6)

The equation is solved by discretizing the functions in a vertical grid with a small grid
size δz. The streamfunction then becomes a vector ψ along with the other functions and
the linear operator incorporating also the boundary conditions becomes a matrix A acting
on the vector ψ.
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We consider four cases of flows. The first is the classical Eady model with U(z) = z,
N(z) = 1 and with atmospheric motions bounded by the tropopause at z = 1. In this case,
there is the additional boundary condition of zero vertical velocity at the tropopause(

∂

∂t
∂ψ′

∂z
+

∂

∂x
∂ψ′

∂z
− ∂ψ′

∂x

)
z=1

= 0. (7)

This is the control case, as it ignores the motions in the stratosphere. In the other
cases, we consider that the stratosphere is a very stable layer with a static stability 2No. The
non-dimensional Brunt–Väisälä frequency transitions smoothly between the two values
using the function shown in Figure 1. To investigate the influence of the stratospheric flow,
we consider three typical cases. The first is that the tropospheric shear continues unabated
into the stratosphere. The second is that there is no stratospheric shear and the third is that
the shear is reversed. The mean flow U(z) in these three cases is also shown in Figure 1.
We therefore calculate the evolution of small perturbations in the three different cases and
compare it to the corresponding evolution in the Eady model.
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Figure 1. Vertical profile of the zonal wind speed U(z) for the cases of (a) positive, (b) zero and
(c) negative stratospheric shear. (d) The vertical profile of the Brunt–Väisälä frequency.

3. The Effect of Stratospheric Shear

We first investigate the modal stability of the flow by calculating the eigenvalues λ
of the A matrix as a function of wavevector k for each case of the stratospheric flow and
compare them to the corresponding eigenvalues in the Eady model. The flow is unstable if
the real part of the eigenvalues is positive as the perturbations grow exponentially with
growth rate σ = real(λ). For long time scales, the perturbations with the largest growth
rate are expected to dominate the flow as their amplitude will be much larger compared
to all others. For all cases, the maximum growth rate is found for meridionally oriented
perturbations (θ = 0). This maximum growth rate is shown in Figure 2 as a function of
the wavenumber K. We observe that in the absence of the stratosphere, perturbations with
K < 2.4, which correspond to perturbations with scales larger than about 2500 km for
typical values of the parameters, are unstable. The maximum growth rate in the Eady
model is achieved for a perturbation with Kmax ≈ 1.6 (horizontal scale of 4000 km) that
grows at a rate of ~0.03 day−1. In all cases of stratospheric flows, the growth rate of the
most unstable perturbation is smaller than the growth rate in the Eady model, with the
largest growth rate achieved in the positive shear and the lowest in the negative shear case.
The scale of the maximally growing perturbation decreases as we move from positive to
negative shear, but remains in all cases larger than the corresponding scale in the Eady
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model. It is also worth noting that in the cases of positive and negative shear, there is a low
wavenumber cut-off for the instability. That is, the flow is stable to perturbations with very
large scales. The range of scales for the unstable perturbations is approximately the same
in these two cases and is shifted towards smaller scales for negative stratospheric shear. So,
by taking into account the stratospheric flow, we expect perturbations with larger scales
growing at a slower rate compared to the Eady model.
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Figure 2. Maximum exponential growth rate of perturbations as a function of wavenumber K for
perturbations with θ = 0 in the three cases of stratospheric flow and in the case of the Eady model.

As it was noted in the introduction, modal analysis determines the stability of the
flow at large times. However, perturbations grow at a finite time scale. To investigate
perturbation growth at finite time, we define a positive definite norm for their amplitude,
which is their energy density. This is given in terms of the state vector ψ as E = ψ+Mψ,
where

M = −1
4

[
∂

∂z

(
1

N2
∂

∂z

)
− K2

]
δz, (8)

is the energy metric. We then seek the initial perturbation that has the largest increase in
energy over a specified time interval Topt, that is the largest ratio of its energy in the optimal
time E

(
Topt

)
over its initial energy E(0). To calculate this ratio, we assume a coordinate

system where w = M
1
2 ψ, so that the energy is given by the Euclidean norm E = w+w

with + denoting the Hermitian transpose. Then, w evolves according to
.

w = Dw where
D = M1/2AM−1/2 and the energy ratio is given by

G =
E
(
Topt

)
E(0)

=
w+(0)eD+Topt eDTopt w(0)

w+(0)w(0)
. (9)

The optimal growth is then given by the maximum eigenvalue of the matrix eD+Topt eDTopt .
In Figure 3, the optimal energy growth at time Topt = 1 (corresponding to 1 day) is

shown as a function of the wavenumber K and the orientation θ of the perturbations, for
the Eady model and the three different cases of stratospheric flow. The white dotted lines
indicate the range of wavenumbers for exponentially growing perturbations and the red
dotted line indicates the wavenumber Kmax with the maximum exponential growth rate.
As we can see, G is a monotonically decreasing function of θ with a maximum at θ = 0. For
the Eady model, we observe that the optimal growth is almost independent of K regardless
of the region of exponential instability. This means that smaller scale perturbations that
are modally stable grow within one day at the same rate as the exponentially unstable
large-scale perturbations. For all cases of stratospheric flow, we observe approximately the
same values of growth as in the Eady model, with smaller scale perturbations (K > 3.5
corresponding to scales lower than 1800 km) achieving slightly larger values of growth
compared to exponentially unstable waves with larger scale.
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Figure 3. Optimal energy growth G as a function of the wavenumber K and the orientation θ of the
perturbations for Topt = 1 day. Shown is the growth for (a) the Eady model and for (b) positive,
(c) zero and (d) negative stratospheric shear.

Figure 4 shows the corresponding growth for Topt = 5 days. We can see that consid-
ering the stratospheric flow results in a reduction of optimal growth between 20% and
30%. The maximum energy growth is observed in the case of negative shear in contrast to
the exponential growth discussed above. The largest energy growth is observed again for
meridionally oriented perturbations with θ = 0 and with large scales as now the maximum
of G occurs for wavenumbers less than 2. However, these wavenumbers are larger than
Kmax. That is, the perturbations growing the most over a time scale of a week have smaller
scales compared to the scales predicted by the modal stability analysis. As in the case of
exponential growth, the scale corresponding to the maximum value of G is larger in all
cases of stratospheric shear compared to the corresponding scale in the Eady model.
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4. Conclusions

In this work, the influence of stratospheric shear on baroclinic instability was investi-
gated. The evolution of small perturbations on a zonal shear flow that extends to the stable
stratospheric layer was calculated for the quasi-geostrophic dynamics using the tools of
Generalized Stability Theory. Three paradigms of flows were considered with positive,
zero and negative stratospheric shear and the results were compared to the Eady model
in which the stratospheric layer is absent. The perturbation growth for all three cases was
found to be lower than the growth in the Eady model. For growth within time periods of
the order of a day, small scale systems (with scales lower than 1800 km) are expected to
grow more quickly, while for time periods of the order of a week, the systems growing the
most have larger horizontal scales of the order of 3000 km. Compared to the Eady model,
the scale of the perturbations that are expected to emerge is larger. For larger times for
which exponentially growing perturbations are expected to dominate, the same conclusion
holds. That is the influence of the stratospheric flow is to weaken perturbation growth and
to lengthen the scale of the emerging systems.

Author Contributions: Conceptualization, N.A.B.; methodology, N.A.B.; software, C.G.; valida-
tion, C.G.; formal analysis, C.G.; investigation, C.G.; writing—original draft preparation, C.G.;
writing—review and editing, C.G. and N.A.B.; visualization, C.G.; supervision, N.A.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eady, E.T. Long waves and cyclone waves. Tellus 1949, 1, 33–52. [CrossRef]
2. Plumb, R.A.; Semeniuk, K. Downward migration of extratropical zonal wing anomalies. J. Geophys. Res. 2003, 108, 4223.

[CrossRef]
3. Muller, J. Baroclinic instability in a two-layer, vertically semi-infinite domain. Tellus 1991, 43, 275–284. [CrossRef]
4. Wittman, M.A.H.; Charlton, A.J.; Polvani, L.M. The effect of lower stratospheric shear on baroclinic instability. J. Atmos. Sci. 2007,

64, 479–496. [CrossRef]
5. Farrell, B.F.; Ioannou, P.J. Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci. 1996, 53, 2025–2040. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3402/tellusa.v1i3.8507
https://doi.org/10.1029/2002JD002773
https://doi.org/10.3402/tellusa.v43i5.11951
https://doi.org/10.1175/JAS3828.1
https://doi.org/10.1175/1520-0469(1996)053&lt;2025:GSTPIA&gt;2.0.CO;2

	Introduction 
	The Evolution of Small Perturbations in the Quasi-Geostrophic Limit 
	The Effect of Stratospheric Shear 
	Conclusions 
	References

