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Abstract: Mineral dust particles are key ingredients of the atmosphere. They interact in atmospheric
physics and chemistry and have important implications for human health. Therefore, it is important
to examine the properties of these aerosols, including their ambient concentrations, size distributions,
shape and mineral composition. In this work, we use satellite remote sensing from Sentinel 2A
and EMIT missions to derive the mineralogical composition of surface areas, and we describe the
development of a new module to represent the atmospheric life cycle of individual dust minerals in
WRF-Chem. In the first step, the GMINER30 mineralogical database is implemented in WRF-Chem
to describe the emission, transport, dry and wet deposition of different mineral types.

Keywords: desert dust; mineralogy; WRF-Chem

1. Introduction

A broad spectrum of environmental processes, such as radiation, cloud formation and
ocean fertilization, and human health are affected by the presence of mineral dust. The
transport of dust particles is dictated by the prevailing meteorological conditions, as well as
the composition and physiochemical properties of the particles themselves. The latter fac-
tors are determined by the soil mineralogy in the source region. To develop a more refined
mineralogical categorization that can significantly improve the dust transport estimations
from numerical models and prepare for their implications on weather, biogeochemistry and
health, we have worked to achieve two goals: (i) derive a finer mineralogical partition of
the source regions through the utilization of high-resolution multi-spectral (Sentinel 2) [1]
and hyperspectral (EMIT-NASA) EO datasets [2]; (ii) implement the existing GMINER30
mineralogical database [3] in the WRF-CHEM model and perform sensitivity tests.

Environ. Sci. Proc. 2023, 26, 54. https://doi.org/10.3390/environsciproc2023026054 https://www.mdpi.com/journal/environsciproc

https://doi.org/10.3390/environsciproc2023026054
https://doi.org/10.3390/environsciproc2023026054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/environsciproc
https://www.mdpi.com
https://orcid.org/0000-0002-3074-3230
https://orcid.org/0000-0002-8650-1783
https://orcid.org/0000-0003-1301-6450
https://orcid.org/0000-0002-1544-7812
https://orcid.org/0000-0003-2631-6057
https://orcid.org/0000-0001-7452-0138
https://orcid.org/0000-0003-0079-1044
https://orcid.org/0000-0003-3603-5515
https://orcid.org/0000-0002-1724-9692
https://orcid.org/0000-0002-1282-0896
https://doi.org/10.3390/environsciproc2023026054
https://www.mdpi.com/journal/environsciproc
https://www.mdpi.com/article/10.3390/environsciproc2023026054?type=check_update&version=2


Environ. Sci. Proc. 2023, 26, 54 2 of 5

2. Methodology and Results
2.1. Mineralogy from Multispectral (Sentinel 2A) and Hyperspectral (EMIT) Satellite Retrievals

The broader area of Lake Chad in Africa was our selected test-bed for the calculation of
mineralogical abundances. Satellite estimates were derived for specific dates in Spring and
Autumn in order to efficiently exclude areas of dense vegetation (NDVI > 0.3) and identify a
number of minerals via spectral indices. The reference spectrum of minerals related to dust
was derived from the USGS Spectral Library v7 [4] and analyzed for signature reflectivity
characteristics in specific wavelengths, upon which a number of custom band ratios were
created. From Sentinel 2 estimates, Alteration, Ferric Oxides and All Iron were calculated
(as both Plagioclase and Orthoclase in the Feldspar group are featureless in the specific
bands). As the number of bands in the Sentinel 2A estimates are limiting to identifying
individual minerals, an approach of calculating mineralogical categories was preferred
instead. Ferric Oxides includes minerals such as Hematite, Goethite and Jarosite, whereas
All Iron includes both ferrous as well as ferric oxides of iron. The Alteration index defines
areas that are rich in clay content. These three categories can be seen in Figure 1.
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Figure 1. Alteration, Ferric Oxides and All Iron Oxides, as calculated using Sentinel data. Black color
indicates no identification and red color indicates high identification of each mineral.

On the other hand, the 285 narrow spectral bands of EMIT reflectance products allow
a significantly more refined partition in the identification of specific minerals, as presented
in Figure 2. The Level 2a product that is currently available provides surface reflectance,
which is derived by screening clouds and correcting for atmospheric effects. By utilising
the L2A estimates and resorting to the aforementioned custom band ratios in Table 1, we
identified a number of minerals that relate to the dust particle uptake. In 2023, the Level 2b
product is expected to offer mineralogy data derived from fitting reflectance spectra after
screening for non-mineralogical components, so we could input these categories into a
global Numerical Weather Prediction (NWP) model.

2.2. Implementation of GMINER30 Database in WRF-Chem

To represent atmospheric transport as well as the dry and wet deposition mechanisms
of the different mineral components of desert dust, we developed a dust mineralogy
module in the framework of the WRF-Chem regional model [5], which we updated with the
MODIS-NDVI active dust sources definition, as described in [6]. In order to achieve this, we
implemented the global 30sec GMINER30 high-resolution mineralogical gridded database
of dust-productive soils for atmospheric dust modeling [3]. This dataset includes a mean
global distribution of the soil mineral composition and is appropriate for implementation
in global and regional numerical studies. The distribution of the effective mineral content
in soil in percentages is given for quartz, illite, kaolinite, smectite, feldspar, calcite, hematite
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and gypsum. The mineral fraction is weighted in terms of the clay and silt content in
the soil. To derive the mass size distribution for each emitted mineral, we followed the
process described in [7], where, for the normalized mass size distribution for each emitted
mineral, we assumed that aggregates are homogeneous mixtures of minerals with similar
fragmentation properties. The modeled surface mineralogical composition is shown in
Figure 3, as obtained via the implementation of GMINER30 in WRF-Chem. Important
spatial variability is evident for most minerals, such as kaolinite and quartz, throughout the
Saharan and Arabian deserts, which is in accordance with earlier studies [3]. The developed
module is able to handle various datasets with minimal tampering, and therefore, additional
mineralogical databases from satellite missions (e.g., Sentinel 2 and EMIT) will be used as
inputs in the model as soon as they become available. As an example, the partitioning of
total dust to specific elements (in this case, quartz) is shown in Figure 4. As shown in this
plot, the variability of quartz particles for a typical desert dust episode depends on both
the atmospheric circulation and the surface mineralogy.
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Table 1. Custom spectral indices for EMIT.

Name Chemical Formula Ratio in
Wavelengths (nm) Band Ratio

Feldspar (plagioclase anorthite-albite) Albite (NaAlSi3O8)—anorthite CaAl2Si2O8 1700/1300 178/124

Clays (illite, montmorillonite, kaolinite) Al9FFeHK3MgO41Si14+8, Al2H2O12Si4, Al2Si2O 5(OH)4 1700/2200 178/245

Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] 1700/2300 178/259

Montmorillonite (smectite) (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O 1700/2056 178/226

Kaolinite Al2Si2O5(OH)4, or in oxide notation: Al2O3·2SiO2·2H2O 1700/2160 178/240

Calcite CaCO3 1700/2330 178/263

Hematite Fe2O3 745.37/530 50/21

Gypsum CaSO4·2H2O 1670/1751.8 174/185

Phosphorus (apatite) Ca5(PO4)3(F,Cl,OH) 768/797.89 53/57
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3. Conclusions and Future Plans

The more detailed mineralogical mapping of dust uptake areas can greatly benefit
atmospheric dust transport estimates from NWP models. Multispectral estimates such
as those form Sentinel 2 can provide broad mineralogical categories instead of individ-
ual minerals due to their limited bands, but offer global coverage and open data access.
Hyperspectral estimates allow the fine identification of particular minerals to be made.
Current products, such as EMIT from NASA, also offer a formerly missing strength, which
is extensive coverage and data availability. The necessary developments to include detailed
mineralogical databases in the atmospheric model have been completed and tested using
existing mineralogical databases. The next steps include the performance of sensitivity
tests and model–data intercomparisons with WRF-Chem to investigate the impacts of
different minerals in atmospheric processes and human health. Additionally, spectral
unmixing techniques will be used to derive the more refined identification of minerals from
satellite retrievals.
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