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Abstract: Atmospheric water vapor is an important greenhouse gas, mainly distributed in the lower
tropospheric levels where its concentration varies significantly in space and time; consequently,
so does precipitable water. This work uses information from thermal infrared images to model
precipitable water (PW) under clear skies. PW is measured using a portable sun-photometer and
thermal images obtained through a high-cost thermal infrared camera. PW depends on the zenith-
point temperature (Tb) exhibiting a non-linear positive exponential relationship, with systematic and
dispersion errors of 0.04 mm and 1.9 mm.

Keywords: precipitable water; zenith-sky temperature; sun-photometer; thermal infrared images;
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1. Introduction

The spatiotemporal variability of atmospheric water vapor affects all components
of the hydrological cycle, also modifying the radiative budget of the atmosphere. Hence,
detailed information on the column-integrated water vapor and its vertical distribution is
necessary at relatively high spatiotemporal resolution. Precipitable water (PW) is defined
as the height of liquid water per unit area formed if the vapor within a vertical column
extending from Earth’s surface to the top of the atmosphere was condensed. Increases in
water vapor concentrations are reflected in the natural greenhouse effect, leading to further
surface warming, especially at regional scales [1].

Historically, PW has been determined through radiosondes by integrating the water
vapor vertical profile in terms of temperature, humidity, and pressure. Although various ra-
diosonde networks exist around the globe, PW is typically reported twice a day. Therefore,
this process is unable to capture possible rapid PW fluctuations. In recent years, PW has
been derived from ground-based meteorological global positioning system (GPS) antennas,
multiwavelength sun-photometers or satellite-based observations of atmospheric absorp-
tion bands [2–7]. Additionally, alternative approaches have been applied using infrared
thermometers by connecting PW with zenith-sky infrared temperature measurements [8,9].

This study examines the link between PW and zenith-point temperatures retrieved
via thermal images from a high-cost thermal camera under clear sky conditions.

2. Materials and Methods

In this study, precipitable water (PW) was measured with a portable Microtops II (MII)
sun-photometer. MII retrieves the total column PW based on measurements at the 936 nm
and 1020 nm channels. Water vapor strongly absorbs solar irradiance in the (near-) infrared
band of the solar spectrum (~936 nm), while at 1020 nm, water vapor absorption is absent.
The methodology for transforming the radiation values to water vapor content is based on
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the Bouguer–Lambert–Beer law and is described in detail in the instrument’s manual. All
the MII data are acquired under cloud-free conditions at ~30 min intervals.

Thermal infrared images are obtained through a high-cost MOBOTIX #73 thermal
infrared camera (M73), sensitive in the far-infrared (7.5 to 13.5 µm) range. The camera
has a field-of-view (FoV) of ~70◦, providing images with a 640 × 480 spatial resolution at
~10 min intervals. Instead of images, temperature data (◦C) are stored in the .csv format.
Only the point at the middle of each thermal image was extracted since its radiosity value
is proportional to the zenith-point temperature (Tb). Due to the different acquisition times
between the thermal images and MII measurements, a temporal synchronization process
(Equation (1)) was applied to create (PW, Tb) pairs considering only M73 images within a
±60 min window centered around the MII measurement times.

∆tij = |tMII,i-tM73,j|, i = 1, . . ., tMII and j = 1, . . ., tM73 (1)

where ∆tij is the time difference between the MII and M73 measurement times, and tMII and
tM73 denoting the timestamps of MII and M47, respectively. This approach is considered
as valid since clear-sky PW changes slightly within the pre-described temporal window.
Cloud contamination was absent since MII measurements were only collected under clear
sky conditions. Basic quality control was also applied to avoid the erroneous recording
of PW and possible corrupted image files. The measurement campaign (February 2022–
September 2022) took place at the Laboratory of Atmospheric Physics, University of Patras,
Greece (38.291◦ N, 21.789◦ E). The final dataset includes 188 (PW, Tb) pairs.

3. Results
3.1. Temporal Variability of PW and Tb

This sub-section of the results discusses the temporal variability of PW and Tb under
cloud-free conditions. The measured PW ranges from 4.4 to 29.1 mm, with a mean value
of 14.9 mm and a standard deviation of 7 mm (Figure 1a). Although PW data are not
available for the winter period of 2022, PW may vary seasonally, with higher values during
the summer months driven by the seasonal fluctuations in air temperature. For example,
before April 2022, the average PW was 9 mm, while during summer, the corresponding
PW average was 22 mm (Figure 1a). The right panel of Figure 1a shows the temporal
variation of the zenith-sky temperature, Tb, as extracted from the thermal infrared images.
According to Figure 1a, PW and Tb exhibited similar temporal patterns, thus implying a
possible significant correlation. Tb was within the range from −79.3 to −3.1 ◦C with an
average of −42 ◦C.

Environ. Sci. Proc. 2023, 26, 33 2 of 4 
 

 

is absent. The methodology for transforming the radiation values to water vapor content 
is based on the Bouguer–Lambert–Beer law and is described in detail in the instrument’s 
manual. All the MII data are acquired under cloud-free conditions at ~30 min intervals. 

Thermal infrared images are obtained through a high-cost MOBOTIX #73 thermal 
infrared camera (M73), sensitive in the far-infrared (7.5 to 13.5 μm) range. The camera has 
a field-of-view (FoV) of ~70°, providing images with a 640 × 480 spatial resolution at ~10 
min intervals. Instead of images, temperature data (°C) are stored in the .csv format. Only 
the point at the middle of each thermal image was extracted since its radiosity value is 
proportional to the zenith-point temperature (Tb). Due to the different acquisition times 
between the thermal images and MII measurements, a temporal synchronization process 
(Equation (1)) was applied to create (PW, Tb) pairs considering only M73 images within a 
±60 min window centered around the MII measurement times. 

Δtij = |tMII,i–tM73,j|, i = 1, …, tMII and j = 1, …, tM73 (1)

where Δtij is the time difference between the MII and M73 measurement times, and tMII 

and tM73 denoting the timestamps of MII and M47, respectively. This approach is consid-
ered as valid since clear-sky PW changes slightly within the pre-described temporal win-
dow. Cloud contamination was absent since MII measurements were only collected under 
clear sky conditions. Basic quality control was also applied to avoid the erroneous record-
ing of PW and possible corrupted image files. The measurement campaign (February 
2022–September 2022) took place at the Laboratory of Atmospheric Physics, University of 
Patras, Greece (38.291° N, 21.789° E). The final dataset includes 188 (PW, Tb) pairs. 

3. Results 
3.1. Temporal Variability of PW and Tb 

This sub-section of the results discusses the temporal variability of PW and Tb under 
cloud-free conditions. The measured PW ranges from 4.4 to 29.1 mm, with a mean value 
of 14.9 mm and a standard deviation of 7 mm (Figure 1a). Although PW data are not 
available for the winter period of 2022, PW may vary seasonally, with higher values dur-
ing the summer months driven by the seasonal fluctuations in air temperature. For exam-
ple, before April 2022, the average PW was 9 mm, while during summer, the correspond-
ing PW average was 22 mm (Figure 1a). The right panel of Figure 1a shows the temporal 
variation of the zenith-sky temperature, Tb, as extracted from the thermal infrared images. 
According to Figure 1a, PW and Tb exhibited similar temporal patterns, thus implying a 
possible significant correlation. Tb was within the range from −79.3 to −3.1 °C with an av-
erage of −42 °C. 

 

 

(a) (b) 

Figure 1. (a) Time series and (b) frequency histograms for PW and Tb under clear-sky conditions.
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PW and Tb exhibited bimodal statistical distributions during the measurement campaign
(Figure 1b). The frequency histograms provide a near-normal behavior for PW > 17 mm and
Tb > −40 ◦C while rightly skewed distributions are observed for lower values.

3.2. PW Modeling Using Tb

The scatter plot in Figure 2a displays a significant relationship between PW and Tb.
An exponential model was fitted to describe this pattern, and the best-fit curve results are
represented by the dashed black line in Figure 1b. The non-linear least squares method with
the Levenberg–Marquardt minimization technique was employed to design the exponential
model, and the best-fit line is defined as PW = 31.1exp(0.02Tb).
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In order to examine the robustness of the PW model, the mean bias error, root mean
square and Pearson’s R correlation coefficient were calculated. The systematic bias is negli-
gible (MBE = 0.04 mm or 0.25% in its normalized form with respect to the PW observations),
while the (normalized) dispersion error was 1.91 mm (12.8%). The predictions and the
observations were highly and significantly correlated (Pearson’s R = 0.96, p value < 0.05).
Figure 2b shows the histogram of the PW differences (∆PW = PWmodel − PW) between the
modeled and observed values. ∆PW ranges between −4.8 and 4.7 mm, with average and
median differences close to zero. According to Figure 2b, the shape of ∆PW is described
by a combination of two near-normal statistical distributions with central tendencies at
~−1 cm and 1.5 cm, respectively. Several sources are responsible for obtaining such PW
differences, including uncertainties in the (a) precision of the instruments, (b) temperature
extraction process, and (c) modeling of PW vs. Tb.

4. Conclusions

The accurate description of PW is important for meteorological, atmospheric and solar
applications. This study examines the relationship between water vapor measurements
against zenith-point temperatures retrieved from thermal infrared images under cloud-
free conditions. Both parameters exhibited similar seasonal patterns with higher values
in summer. PW was exponentially correlated to Tb. Negligible systematic bias and low
dispersion error existed between the predicted and observed PW values. This methodology
can be applied to generate high-resolution clear-sky PW measurements, especially when
sun-photometer observations are missing.
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