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Abstract: This study analyzes the structure of the Planetary Boundary Layer (PBL) at Mindelo, Cabo
Verde, where the ASKOS Campaign took place from 2021 to 2022. Datasets from ground-based
remote sensing instruments and radiosondes are used to derive the PBL height, by applying the
Wavelet Covariance Transform (WCT), Threshold (TM), and Gradient Method (GM). Two case studies
are described in detail, one with a significant dust load (23 September 2022) and one with relatively
less dust load (12 September 2022). In the first case, the PBL top is found lower, and the methods
used for the retrievals are characterized by larger uncertainties. In the second case, a higher and more
convective PBL is observed. Additionally, results are compared with ECMWF outputs, establishing
good agreement.

Keywords: PBL; ASKOS; MBL; remote sensing; WCT; lidar; radiosonde; dynamics; lower troposphere

1. Introduction

The ASKOS experiment [1] is the ground-based component of the Joint Aeolus Tropical
Atlantic Campaign (JATAC) and was carried out at Cabo Verde during the summers and
autumns of 2021 and 2022. The primary aim of ASKOS was the collection of a novel dataset
of synergistic measurements in the region, to address a wide range of scientific objectives,
including the processes affecting dessert dust transport and the effect of dust on boundary
layer dynamics. Within ASKOS, a full ACTRIS (Aerosol Cloud and Trace Gasses Research
Infrastructure) aerosol and cloud remote sensing station was established at Cabo Verde,
Mindelo city (16.87◦ N, 24.99◦ W) on the island of São Vicente, where intense ground-based
remote-sensing and UAV-based airborne in situ measurements were conducted.

The purpose of this study is to map the Planetary Boundary Layer (PBL) [2] at the São
Vicente island of Cabo Verde and investigate the capabilities of the models to accurately
retrieve the PBL height of this coastal site. Additionally, we will investigate PBL height
characteristics in the ASKOS dataset under different dust load conditions. The experimental
site is a tropical area far away from the western coast of the African continent and is affected
by Saharan dust and marine aerosols. These conditions shape an advantageous field for
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investigating the effect of aerosol presence on PBL evolution, with high-quality atmospheric
observations. Furthermore, very shallow PBL heights can occur at coastal locations [3].
The continuous monitoring of the boundary-layer top with active remote sensing has been
verified in past studies using several methods [4–8]. Studying PBL using lidars can suffer
from many restrictions related to weather conditions, range, and accuracy, but it can also
provide high temporal and spatial resolution.

The manuscript is structured in three sections. Section 2 describes the data and the
methodology in detail. Section 3 presents two case studies analyzed in detail, one with
a thick dust layer present on the lower troposphere and one with relatively less dust
load. A statistical analysis for a short time period is also performed, in order to depict the
difference between the two cases. In Section 4, the main conclusions are summarized.

2. Data and Methodology

In this study, we used measurements from the September 2022 ASKOS operations.
More specifically, collocated PollyXT Raman Lidar [9] and Halo Wind Doppler Lidar [10]
profiles were used to derive the diurnal PBL height. Radiosonde profiles were also analyzed
to provide the dynamic structure of the lower troposphere and, furthermore, evaluate the
remote sensing measurements. Additionally, the observed results were then compared
to the ERA5 Re-Analysis dataset from the European Centre for Medium-Range Weather
Forecasts (ECMWF) [11], at a 0.25◦ × 0.25◦ resolution with 137 levels [12].

The methodologies used to identify the PBL top are depicted in Figure 1: Wavelet
Covariance Transform (WCT) [13]; Gradient Method (GM) [14]; and Threshold Method
(TM) [3].
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Figure 1. Conceptual diagram of the application of the (a) Wavelet Covariance Transform method
(WCT): wavelet function (red line) is derived using a signal (black line), and a local maximum is
identified (purple line); (b) Gradient Method (GM): the gradient (red line) of a vertical profile (black
line) is calculated, and a sharp change is located (purple line); (c) Threshold Method (TM): while the
signal is lower than a threshold value, it is considered to be within PBL.

The WCT method is applied on the 30 min averaged Water Vapor Mixing Ratio
(WVMR) product of the PollyXT Lidar and on the attenuated backscatter coefficient (BSC) of
both the PollyXT and Halo Wind Lidar [4]. The TM is applied on the 1 h averaged Turbulent
Kinetic Energy dissipation rate (TKE) product of the Halo Lidar with the threshold value of
0.00015 m2 s−3 [3], and the GM is applied to potential temperature and relative humidity
radiosonde profiles in order to acquire the PBL top [14].

3. Results

Two cases with different dynamic characteristics and aerosol loads are presented in
detail: 12 and 23 September.
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3.1. Case Study: 12 September 2022—Light Dust Load

On 12 September 2022, an elevated dust layer was present above approximately
1.5 km, with an Aerosol Optical Depth (AOD) of 0.45 at 500 nm (Appendix A). This aerosol
condition represents a common day in Mindelo.

In Figure 2, all the retrievals of that case are cumulatively depicted. Orange shading
represents the dust layer, and blue shading represents the turbulence. Overall, the results
for PBL height show good agreement during the entire day (after 17:00 UTC Halo mea-
surements were not available). PBLWVMR_PollyXT is only available during 00:00–06:00 and
20:00–24:00 UTC because of the nighttime operation of the PollyXT water vapor channel.
Northwestern winds dominate below 1 km (not shown), except for 2:00–4:00, when they
become north winds. At this time space, TKE is dampened, and the TM method does not
suggest the existence of a mixing layer, while PBLWVMR_PollyXT seems to be overestimated
compared to the other observations at the beginning of the day. On the other hand, during
the daytime, a shallow PBL is observed for all methods. That limited daytime evolution
is an indicative feature of coastal areas. The radiosonde launched at 10:00 captures the
highest PBL top at 1.1 km. PBLECMWF is in good agreement with the rest of the retrievals.
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etrates at lower altitudes below 1 km, affecting the evolution of PBL. In Figure 3, there are 
some alienated points above 1 km before 6:00 and after 15:00 that do not correspond to 
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Figure 2. Boundary layer height observed on 12 September 2022: PBLWVMR_PollyXT (blue triangles) is
retrieved with WCT on WVMR product of PollyXT Lidar; PBLBSC_PollyXT (purple circles) is retrieved
with WCT on 1064 nm BSC product of PollyXT Lidar; PBLBSC_Halo (black circles) is retrieved with
WCT on BSC product of Halo Lidar; PBLTKE_Halo (maroon diamond) is retrieved with TM on TKE
product of Halo Lidar; and PBLECMWF (green square) is the output of ECMWF model. Orange shading
corresponds to Volume Depolarization Ratio (VLDR) at 532 nm channel of PollyXT Lidar, and blue
shading corresponds to TKE dissipation rate measured with Halo Lidar.

3.2. Case Study: 23 September 2022—Heavy Dust Load

On 23 September 2022, a few low-level cumulus clouds and a significant aerosol load
with AOD that exceeded 0.7 at 500 nm (Appendix A) were present. A thick dust layer
penetrates at lower altitudes below 1 km, affecting the evolution of PBL. In Figure 3, there
are some alienated points above 1 km before 6:00 and after 15:00 that do not correspond
to PBL values. These ‘outliers’ of PBLBSC_PollyXT, PBLBSC_Halo, and PBLWVMR_PollyXT are
the results of WCT, detecting elevated aerosol layers instead of the PBL top. However,
the TM at TKE dissipation rate and ECMWF result in a more effective PBL representation
than WCT.

As mentioned also in the previous case, no sharp daytime evolution is observed.
On the contrary, lower PBL values are recorded during the convective hours, relative
to 12 September. PBLECMWF is in good agreement with PBLTKE_Halo during all day and
with all the results during 10:00–18:00. The radiosondes of 05:22 and 19:38 UTC capture
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PBL heights that are in good accordance with remote sensing (PBLBSC_PollyXT, PBLBSC_Halo,
PBLWVMR_PollyXT, and PBLTKE_Halo) and model (PBLECMWF) results.
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3.3. Comparison of the Two Cases

In both cases, the measured PBL presents several characteristics that resemble a Marine
Atmospheric Boundary Layer (MABL): it is a relatively shallow layer with no significant
variabilities on the top. Table 1 shows the average and standard deviation of PBLBSC_PollyXT,
PBLBSC_Halo, PBLTKE_Halo, and PBLECMWF.

Table 1. Average and standard deviation of PBL height retrievals with each product and method.

Time Space (UTC) PBLBSC_PollyXT PBLBSC_Halo PBLTKE_Halo PBLECMWF

12 September 10:00–14:00 1 918.6 ± 86.4 m 784 ± 24 m 811.2 ± 64.4 m 821.3 ± 35.3 m
23 September 10:00–14:00 1 672.9 ± 27.3 m 698.7 ± 25.3 m 782.4 ± 21.5 m 748.4 ± 27.7 m

1 Local Time 9:00–13:00.

During the period 10:00–14:00 UTC (that corresponds to 9:00–13:00 local time), the
standard deviation for both cases varies between 21.5 and 86.4 m, indicating low variability
that is connected with the limited daytime evolution. The study on 23 September presented
lower PBL retrievals and also smaller uncertainties, compared to 12 September during
that time period. This result is a combination of the dust amount and the dust layer
level. On 23 September, the layer was thick and infiltrated in lower levels (approx. 1 km),
reducing the amount of solar radiation [15] that reaches the surface and also capping the
top of the PBL (Appendix A). Moreover, the lower troposphere is less turbulent than on
12 September and is, therefore, more stable.

4. Conclusions

Our PBL results using WCT and TM are in good agreement with the PBL derived from
radiosonde profiles, indicating trustworthy references for the detection of layering. BSC
and WVMR are proportional to the aerosol concentration and constitute a possible indicator
for PBL detection. However, when an elevated aerosol layer approaches the surface, it is
likely that WCT results in big variabilities for the detection of layering, since this elevated
layer is captured instead of PBL (23 September 02:00–04:00 and 20:30–22:00).

Mindelo is an area directly influenced by the continuous ocean–atmosphere exchange
of heat, moisture, and momentum. Thus, the measured PBL presents MABL characteristics.
No sharp daytime evolution or big vertical variabilities are observed on our relatively
shallow PBL retrievals.
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The presence of dust layers directly affects the formation of PBL. When a thick dust
layer hovers over Mindelo (23 September), less short-wave solar radiation reaches the
surface. As a result, a shallower PBL is formed, compared to a day with a lighter aerosol
load (12 September).

A possible future study is to perform statistical analysis for the retrieval of PBL heights
on the entire dataset of the ASKOS campaign for the years 2021 and 2022. Classification
of the results according to the meteorological conditions and aerosol layers’ presence is
also envisaged.
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Appendix A

The Level 1 AOD data obtained with a CIMEL Sunphotometer indicate higher AOD
on 23 September 2022, especially during the afternoon, compared to 12 September 2022
(Figure A1).
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AOD measurements for 23 September 08:00–16:00 UTC are not available, but taking
into consideration the VLDR from PollyXT, one could say that it was a day with a heavy
aerosol load.

In Figure A2, the global horizontal irradiance of shortwave radiation is presented.
The overall solar radiation that reached the surface on 12 September was more relative to
23 September.
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