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Abstract: We investigate future changes of agro-climatic zones over Europe under two differ-
ent IPCC Representative Concentration Pathways (RCP4.5 and RCP8.5) based on an ensemble
of 11 bias-corrected regional climate model simulations covering the period 1981–2100. Eight distinct
agro-climatic zones were identified by applying the k-means clustering method for the reference
period 1981–2010 on two temperature-related parameters: the growing season length and the active
temperature sum. Our results point towards a strong northward shift of the agro-climatic zones,
especially under RCP8.5, towards the end of the century. A significant shift of the agro-climatic zones
is also projected for RCP4.5 in the near-future and the end-of-the-century periods for large areas
in Europe.

Keywords: climate change; regional climate model simulations; bias-corrected; EURO-CORDEX;
future scenarios; agro-climatic zones; northward shift; Europe

1. Introduction

Agriculture is one of the most climate- and weather-dependent socio-economic sectors
since most of the agriculture productivity and quality are directly dependent on different
meteorological and climatic factors [1]. The most important abiotic factor affecting the phe-
nological growth of plant species is temperature, as the additive thermal time characterizes
the physiological development of plants throughout their life cycle [2]. Despite thermal
requirement differences among the various plant species, the observed increased temper-
ature has contributed significantly to the earlier emergence of phenophases of common
plant species, including aromatic plants, agricultural crops, fruit trees, and forests [3], with
important consequences for plant health and biodiversity. Previous studies have shown
that the agricultural crop cycle has been significantly reduced in recent decades due to
increasing temperatures [4]. Furthermore, the observed warming in the recent past has
also favored the northward shift of crop species to areas that were previously constrained
by either too short a growing season length or by unattainable thermal requirements to
complete the crop growth cycle [4].

Future projected global warming and regional climate change will likely cause a further
northward expansion of crops adapted to warmer climates but also diminish suitability in
the areas affected by increasingly higher temperatures and more frequent droughts [5,6].

Environ. Sci. Proc. 2023, 26, 20. https://doi.org/10.3390/environsciproc2023026020 https://www.mdpi.com/journal/environsciproc

https://doi.org/10.3390/environsciproc2023026020
https://doi.org/10.3390/environsciproc2023026020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/environsciproc
https://www.mdpi.com
https://orcid.org/0000-0003-3104-5271
https://orcid.org/0000-0002-0857-3220
https://orcid.org/0000-0002-8185-2074
https://orcid.org/0000-0002-3496-2692
https://doi.org/10.3390/environsciproc2023026020
https://www.mdpi.com/journal/environsciproc
https://www.mdpi.com/article/10.3390/environsciproc2023026020?type=check_update&version=1


Environ. Sci. Proc. 2023, 26, 20 2 of 6

Ceglar et al. [6], using a set of five high-resolution regional climate model simulations
under the high-end emission scenario (RCP8.5) in the 21st century, found that a major
part of Europe will be affected by northward climate zone migration at a 2 ◦C global
warming level (compared to the preindustrial period). In this context, several regions of
the Mediterranean may lose climate suitability to grow specific crops in favor of northern
European regions. This indicator-based assessment suggested that the potential advantages
of the lengthening of the thermal growing season in Northern and Eastern Europe are often
outbalanced by the risk of late frost (at least in the first half of the century) and increased
risk of early spring and summer heat waves [6].

Within the framework of the MICROSERVICES project (https://microservices.ethz.ch/
(accessed on 1 June 2021)), which aims at improving the capacity to predict the cascad-
ing effects of climate change on microbial diversity, crop–microbiome interactions, and
agricultural ecosystem functions, we investigated future changes of agro-climatic zones
over Europe under two different IPCC Representative Concentration Pathways (RCP4.5
and RCP8.5). The present study is an extension of the work by Ceglar et al. [6] with the
implementation of additional regional climate model simulations. Specifically, we analyzed
11 bias-corrected EURO-CORDEX regional climate model simulations covering the period
1981–2100 under RCP4.5 and RCP8.5. Furthermore, the methodology was applied for
specific time periods in the future (2031–2060 and 2071–2100) for both RCP4.5 and RCP8.5
instead of the time-varying 2 ◦C global warming level approach under RCP8.5 adopted by
Ceglar et al. [6].

2. Data and Methodology

The identification of climatically distinct ecoregions across Europe included the estima-
tion of agro-climatic zones using future climate projections (http://jeodpp.jrc.ec.europa.eu/
ftp/jrc-opendata/LISCOAST/10011/LATEST/ (accessed on 1 April 2021)) retrieved from
a set of high-resolution, bias-corrected EURO-CORDEX (https://www.euro-cordex.net/
(accessed on 1 April 2021)) regional climate model simulations [7]. More specifically, eleven
model combinations were selected from various EURO-CORDEX regional climate models
driven by simulations with several global circulation models used in the Coupled Model
Intercomparison Project Phase 5 (CMIP5) framework (Table 1). Each model combination
includes three high-spatial-resolution (~0.11 degree) regional climate model simulations for
(a) the historical period 1981–2010, (b) the future period 2011–2100 following the RCP4.5
scenario, and (c) the future period 2011–2100 following the RCP8.5 scenario. RCP8.5 is a
high-end scenario without any future environmental and climate change policies applied
with GHG concentrations continuously increasing to reach a radiative forcing of 8.5 W m−2

at the end of 21st century [8]. It should be noted that high-end scenarios (such as RCP8.5)
can be very useful to explore the full range of risks of climate change; however, the rapid
development of renewable energy technologies and emerging climate policy have made
them considerably less likely [9]. RCP4.5 is a moderately cost-efficient mitigation scenario
designed to reach the radiative forcing target of 4.5 W m−2, with GHG concentrations
starting to decrease after 2040 [10].

The identification of agro-climatic zones was carried out following the methodology
applied by Ceglar et al. [6]. The assessment of agro-climatic zones was based on two
parameters that describe the climate potential of agricultural production systems—the
Growing Season Length (GSL) and the Active Temperature Sum (ATS). GSL is calculated
as the sum of days between the first time in the year when for at least six consecutive days
the mean daily surface temperature is greater than 5 ◦C and the first time for at least six
consecutive days the mean daily surface temperature is less than 5 ◦C, which represents
the length of the growing season. The ATS is calculated as the sum of the daily surface
temperatures above the 0 ◦C threshold during the growing season.

https://microservices.ethz.ch/
http://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/LISCOAST/10011/LATEST/
http://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/LISCOAST/10011/LATEST/
https://www.euro-cordex.net/
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Table 1. Regional Climate models retrieved from EURO-CORDEX.

EURO-CORDEX RCM CMIP5 GCM Variant Label

CLMcom-CCLM4-8-17 CNRM-CERFACS-CNRM-CM5 r1i1p1

CLMcom-CCLM4-8-17 ICHEC-EC-EARTH r12i1p1

CLMcom-CCLM4-8-17 MPI-M-MPI-ESM-LR r1i1p1

DMI-HIRHAM5 ICHEC-EC-EARTH r3i1p1

IPSL-INERIS-WRF331F IPSL-IPSL-CM5A-MR r1i1p1

KNMI-RACMO22E ICHEC-EC-EARTH r1i1p1

SMHI-RCA4 CNRM-CERFACS-CNRM-CM5 r1i1p1

MHI-RCA4 ICHEC-EC-EARTH r12i1p1

SMHI-RCA4 IPSL-IPSL-CM5A-MR r1i1p1

SMHI-RCA4 MOHC-HadGEM2-ES r1i1p1

SMHI-RCA4 MPI-M-MPI-ESM-LR r1i1p1

The categorization of each grid point into agro-climatic zones was implemented by
applying the k-means clustering method with Lloyd’s algorithm [11] to the GSL and ATS
data. More specifically, k data points are initially selected at random as central clusters.
Then, all data points, based on their distance from the central clusters, are classified
to the cluster from which they have the shortest distance. The process of recalculating
the central clusters and re-entering the points into the new clusters is repeated until
all the points remain in the same cluster. The number of central clusters chosen was
k = 8 based on the findings of Ceglar et al. [6], where the optimal number of central clusters
using observational data was found to be eight (8) as it explained the majority of the
data variability.

The annual GSL and ATS data were averaged over the historical period 1981–2010;
then, they were normalized by subtracting the mean and dividing it by the standard
deviation. The k-means method was applied to the resulting normalized GSL and ATS
data, and each grid point (a pair of normalized GSL and ATS values corresponds to a
grid point) was categorized into one of the eight central clusters—agro-climatic zones
(Table 2). The categorization/naming of the eight agro-climatic zones was based on that of
Ceglar et al. [6]. Figure 1a shows the GSL–ATS scatter plot of the grid points corresponding
to each cluster—the agro-climatic zone and the corresponding central clusters—for the
ensemble of the 11 regional climate model simulations for the historical period 1981–2010.

Table 2. Central clusters (agro-climatic zones) for the ensemble of the 11 regional climate simulations
for the historical period 1981–2010.

Cluster GSL (Days) ATS (◦C) Agro-Climatic
Zone

Agro-Climatic Zone
Acronym

1 113.2 1104.2 Boreal North BON

2 153.3 1822.8 Boreal South BOS

3 190.9 2508.8 Nemoral NEM

4 220.9 3078.7 Continental CON

5 249.5 3771.8 Pannonian PAN

6 308.7 3778.8 North maritime NMA

7 340.6 4840.4 South maritime SMA

8 359.1 6077.3 Mediterranean MED
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Figure 1. (a) GSL–ATS scatter plot of the grid points corresponding to each agro-climatic zone
(colored dots) and the corresponding central clusters (grey dots) for the ensemble of the 11 regional
climate simulations for the historical period 1981–2010. (b) Agro-climatic zones for Europe based
on GSL and ATS obtained from the ensemble median of the 11 regional climate model simulations
during the historical period 1981–2010.

The assessment of agro-climatic zones over Europe was performed for the future
periods 2031–2060 and 2071–2100 for the scenarios RCP4.5 and RCP8.5. The future GSL and
ATS data were normalized based on the historical reference period 1981–2010. Then, the
future normalized GSL and ATS data were categorized into one of the clusters that were
calculated for the historical reference period 1981–2010 based on their distance from them.

3. Results

Figure 1b shows the spatial distribution of the agro-climatic zones over the European
region for the historical reference period 1981–2010. Southern Europe is characterized by
the Mediterranean (MED), the South maritime (SMA), and the North maritime (NMA)
agro-climatic zones, which exhibit a generally complex spatial distribution and seem to
follow natural features and barriers, such as mountain range systems. In Eastern Europe,
the distribution of agro-climatic zones is more homogeneous, with the Pannonian (PAN),
Continental (CON), Nemoral (NEM), and Boreal South (BOS) agro-climatic zones following
a distinct gradient based on the regions’ latitude. Lastly, in Western Europe, the dominant
agro-climatic zones are SMA, NMA, CON, and NEM. These results are in agreement with
the results of Ceglar et al. [6], on whose methodology the present analysis was based.

The future projection of the agro-climatic zones over Europe for the RCP4.5 emission
scenario and for the periods 2031–2060 and 2071–2100 is shown in Figure 2a,b, respectively.
For the near-future period 2031–2060, several European regions are estimated to experience
a considerable migration of agro-climatic zones towards the north with respect to the
reference period 1981–2010. This northward shifting signal becomes regionally extended
over larger parts of Europe towards the end of 21st century (2071–2100), in agreement with
the relatively increasing warming levels during the 21st century for RCP4.5.

Figure 3a,b show the future projections of the agro-climatic zones for the RCP8.5
scenario for the periods 2031–2060 and 2071–2100, respectively. For the near-future period
2031–2060, large parts of Europe will experience a considerable migration of agro-climatic
zones towards the north with respect to the reference period 1981–2010. The results for
the period 2031–2060 for RCP8.5 are similar to those of the RCP4.5 scenario for the period
2071–2100. For the period 2071–2100, a change in agro-climatic zones is projected for
almost all parts of Europe with a more pronounced northward zone migration. This is
related to the stronger warming trends during the 21st century for RCP8.5 compared with
RCP4.5, which, in turn, is linked to the characteristics of the RCP8.5 having higher GHG
emissions in addition to the absence of mitigating climate policies. Our results are in line
with Ceglar et al. [6], who studied the migration of agro-climatic zones over Europe under
the 2 ◦C warming level utilizing a subset of the simulations used in this study.
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4. Conclusions

An ensemble of 11 bias-corrected EURO-CORDEX regional climate model simula-
tions covering the period 1981–2100 was used in our study to assess the impact of global
warming on agro-climate zone migration in Europe under the high-end emission sce-
nario RCP8.5 and the moderate mitigation scenario (RCP4.5). Eight distinct agro-climatic
zones were identified by applying the k-means clustering method for the reference period
1981–2010 on two temperature-related parameters: GSL and ATS. The agro-climatic zone
patterns over Europe for the near-future period 2031–2060 and the end-of-the-century
period 2071–2100 were compared against those of the reference period. Our results point
towards a strong northward shift of the agro-climatic zones, especially under the high-end
emission scenario RCP8.5 towards the end of the century. For the moderate mitigation
scenario RCP4.5, a significant shift of the agro-climatic zones is also projected for the near-
future and the end-of-the-century periods for extended areas in Europe. The rate of climate
zone migration depends on the chosen emission scenario, as the trends in surface warming
reflect the transient nature of the scenarios.
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