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Abstract: Airborne pollen triggers allergic reactions in up to 40% of the global population. The
incidence of pollen allergies is increasing in Thessaloniki, Greece and it is predicted that more than
50% of the European Union’s inhabitants will suffer from allergic rhinitis by 2025. Thus, it is essential
to investigate and predict high pollen concentrations to address this growing concern. This study
utilized the Gradient Boosting Regression (GBR) technique, a machine learning approach, to estimate
pollen concentrations of Oleaceae and Quercus taxa, using daily meteorological and land surface data
obtained from the European Center for Medium-Range Weather Forecasts (ECMWF). The method
accurately predicted pollen concentrations for both species, with an Index of Agreement (IoA) of 0.86
for Oleaceae and 0.78 for Quercus, despite the limited size of the dataset.

Keywords: airborne pollen; pollen concentrations; Oleaceae; Quercus; machine learning; Gradient
Boosting Regression

1. Introduction

Pollen, a significant environmental factor, has a considerable impact on human health,
triggering various respiratory diseases in urban European cities and affecting up to 40%
of the global population [1,2]. Allergy-related respiratory diseases are among the criti-
cal public health concerns of the 21st century [3,4]. The European Union has estimated
that over half of its population will suffer from allergic rhinitis and/or asthma by 2025,
resulting in reduced quality of life, decreased workplace productivity, and increased health-
care costs [5–7]. Atmospheric pollen concentration doubles every decade [8,9]; therefore,
predicting and monitoring pollen concentrations are of utmost importance.

Machine learning techniques integrate pollen observations, meteorological data, and
algorithms to accurately predict daily pollen concentrations. The most commonly applied
techniques, including Deep Neural Networks (DNN) [10,11], Random Forests [10–12],
Light Gradient Boosting Machine (LightGBM) [13], Least Absolute Shrinkage and Selection
Operator (LASSO) [10], Artificial Neural Networks (ANN) [13–16], Extreme Gradient
Boosting (XGBoost) [11], a K-mean cluster analysis [15,17], and a Bayesian ridge [11] can
estimate phenological metrics and pollen intensity parameters. These techniques have been
utilized for predicting pollen concentrations of various species such as Ambrosia [10–12,17],
Oleaceae [13], Quercus [12], Cupressaceae [12], and Poaceae [12,15,17], and thus constitute
valuable tools for allergiological and ecological implementations.

Previous studies on predicting pollen concentrations in Thessaloniki, Greece have
been based only on observational data [8,18] and in-field measurements [19,20]. Current
research on the prediction of pollen concentrations using machine learning techniques is
limited and usually depends on extensive datasets. The primary focus has been on the
use of K-means clustering algorithms [17] and data-driven modeling methods such as
the multi-layer perceptron, support vector regression, and regression trees [21]. These
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methods have been applied to develop effective prediction models for mean daily pollen
concentrations of highly allergenic taxa, such as Oleaceae. Nonetheless, there is presently
no commensurate investigation regarding the application of machine learning techniques
to forecast pollen concentrations of Quercus taxa or for constrained datasets.

The objective of this research is to develop a machine learning approach based on
Gradient Boosting Regression (GBR) to estimate pollen concentrations for Oleaceae and
Quercus taxa. The proposed method leverages daily meteorological and land surface data
obtained from the European Center for Medium-Range Weather Forecasts (ECMWF). The
training dataset comprises 6 years of daily pollen concentration measurements from 2016 to
2021. The final year of the dataset, 2022, is allocated for conducting an independent testing
phase to evaluate the machine learning model’s performance. In addition, the main pollen
season for all years is determined.

2. Materials and Methods
2.1. Pollen Data

Airborne pollen in Thessaloniki was collected using a 7-day recording volumetric
spore trap of the Hirst design [22], located at 30 m a.g.l. on the roof of the Department of
Biology at Aristotle University of Thessaloniki in the city center (40◦37′ N, 22◦57′ E) [19,20].
The station has been continuously operating since 1987, following the standard guidelines
of the European Aerobiology Society for pollen counting [23]. Measurements are expressed
as average daily pollen concentrations (grains/m3). The identification of the main pollen
season of Oleaceae and Quercus taxa was executed by utilizing the 95% method [24].

2.2. ECMWF Data

The daily meteorological and land surface contextual data were sourced from the
ECMWF reanalysis [25]. A range of 22 predictor variables were utilized based on the
methodology of Zewdie et al. [11], including the total water column, cloud cover, surface
and mean sea level pressures, vertical and horizontal wind speed, soil temperature at
various levels, skin temperature, surface albedo, total column ozone, volumetric soil water,
dew point temperature at 2 m, surface and 2 m temperature, precipitation, and high and
low vegetation cover.

2.3. GBR and Analysis

Gradient Boosting Regression (GBR) is a widely used machine learning algorithm that
is particularly suited for analyzing tabular datasets. This approach is capable of identifying
complex, nonlinear relationships between a model’s target and its associated features, and
is highly adaptable, able to effectively handle both missing values and outliers [26,27].

The GBR model was developed using pollen and ECMWF data collected from 2016 to
2021 (year 2018 is missing due to a lack of data), with the data from 2022 used for testing the
model’s predictive performance. All input parameters were time-lagged up to 30 days back,
including the sine of the Julian day, to identify the relationship between pollen abundance
and previous days’ atmospheric weather and land surface parameters. The GBR algorithm,
with Friedman’s mean squared error criterion as the splitting criterion, was implemented,
and normalization was not required. To identify the best combination of hyperparameters,
the RandomizedSearchCV function from the scikit-learn library was employed [28]. The
function performed 1000 iterations on the training data, exploring various hyperparameter
settings. The loss function used was Huber, and the ensemble comprised 300 estimators.

3. Results and Discussion

Figure 1 depicts the time series of pollen concentrations for the Oleaceae and Quercus
taxa for the years 2016 to 2022. Notably, the Oleaceae exhibits elevated concentrations in
2019, reaching a peak of 152 grains/m3 on 28 May. In the remaining years, a consistent
pattern is observed, where the main pollen season commences in mid- to late March and
ends in early July, with concentrations staying below 60 grains/m3. In contrast, the Quercus
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exhibits higher concentrations, with peak values observed in 2016 (670 grains/m3 on 20
April) and 2021 (654 grains/m3 on 1 May). However, in 2022, the concentrations decrease
compared to previous years, not exceeding 150 grains/m3. The pollination period for
Quercus exceeds from mid-April to mid-June.
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Figure 1. Oleaceae and Quercus daily pollen concentrations (2016–2022) in Thessaloniki, Greece.

Figure 2 illustrates the time series of observed and predicted daily concentrations
for the Oleaceae and Quercus species for 2022. The GBR model demonstrates satisfactory
performance in predicting the observed pollen concentrations for both taxa, albeit with a
slight underestimation of the peaks. Specifically, during the onset of the main pollen period,
the model underestimates the concentrations of Oleaceae, resulting in an overestimation
during the occurrence of secondary peaks. Conversely, for the Quercus species, the model
initially overestimates the concentrations, followed by an underestimation at the peaks.
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Figure 2. Time series of the observed and predicted (a) Oleaceae and (b) Quercus daily pollen
concentrations (2022).

The statistical metrics (Appendix A) presented in Table 1 (MB Equation (A1), MAE
Equation (A2), NMAE Equation (A3), IoA Equation (A4)) further demonstrate the satisfac-
tory correlation and estimation of daily concentrations using the GBR model. The observed
and predicted values exhibit a significant agreement, with an IoA of 0.86 for Oleaceae and
0.78 for Quercus, highlighting the model’s effectiveness in accurately capturing the pollen
concentrations for both species.



Environ. Sci. Proc. 2023, 26, 2 4 of 6

Table 1. Statistical metrics for the evaluation of GBR model.

MB MAE NMAE IoA

Oleaceae 0.28 2.81 0.55 0.86
Quercus −0.38 11.02 0.64 0.78

Table 2 confirms the GBR model’s successful prediction of the peak day and timing of
the main pollen season. The actual and predicted peak days for Oleaceae aligned closely,
occurring on DOY 145 (25 May) and DOY 146 (26 May), respectively. Similarly, the actual
and predicted peak days for the Quercus coincided, observed on DOY 117 (27 April) and
DOY 118 (28 April), respectively. Furthermore, there was notable agreement between
the predicted and observed start and end dates for both taxa. The GBR model accurately
estimated the start and end dates for the Oleaceae as DOY 89 (30 March) and DOY 196
(15 July), respectively, and for the Quercus, as DOY 111 (21 April) and DOY 165 (14 June),
respectively. These findings demonstrate the GBR model’s reliable estimation of the main
pollen season’s timing, providing valuable insights for allergy management and preventive
measures.

Table 2. Actual and Expected Dates of Start, End, and Peak of the Main Pollen Season (2022) in Day
of Year (DOY).

Actual Date Expected Date

Start End Peak Start End Peak

Oleaceae 89 (30 March) 196 (15 July) 145 (25 May) 96 (6 April) 185 (4 July) 146 (26 May)
Quercus 111 (21 April) 165 (14 June) 117 (27 April) 101 (11 April) 171 (20 June) 118 (28 April)

4. Conclusions

The present study effectively utilized the Gradient Boosting Regression (GBR) tech-
nique to precisely estimate daily pollen concentrations for the Oleaceae and Quercus taxa in
Thessaloniki, Greece. The model’s accuracy was confirmed through the agreement between
the observed and predicted values, while its capability to forecast the timing of the main
pollen season was successfully demonstrated. These findings hold significant implica-
tions for the management of allergies and the implementation of preventive measures,
addressing the mounting apprehension surrounding pollen allergies in the population.
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Appendix A

The statistical metrics, which were utilized to assess the performance of the parame-
terizations, are defined as follows:

• Mean Bias (MB):

MB =
∑N

i=1(Pi −Oi)

N
(A1)

• Mean Absolute Error (MAE):

MAE =
∑N

i=1|Pi −Oi|
N

(A2)

• Normalized Mean Absolute Error (NMAE):

NMAE =
∑N

i=1|Pi −Oi|
NO

(A3)

• Index of Agreement (IoA):

IoA = 1− ∑N
i=1(Pi −Oi)

2

∑N
i=1

(∣∣Pi −O
∣∣+∣∣Oi −O

∣∣)2 (A4)

where N is the number of values, Pi is the predicted values, Oi is the observed values,
and O is the observation’s mean. The MB ranges from −∞ to +∞ with an optimal
value of 0, while MAE and NMAE range from 0 to +∞ with an optimal value of 0. IoA
ranges from 0 to 1, with an optimal value above 0.7 indicating a good performance of
the predictions. The optimal value is 1 [29,30].
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