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Abstract: In this study, we evaluate NASA CloudSat products using ground-based measurements per-
formed in the framework of the Aerosol, Clouds, and Trace Gases Research Infrastructure (ACTRIS).
Combined ground-based lidar–radar observations performed in the framework of the PRE-TECT
experiment during April 2017 at the Greek Atmospheric Observatory in Finokalia, Greece (35.338◦ N,
25.670◦ E, 250 m asl) are used to evaluate the CloudSat performance in detecting hydrometeors. A
case study with a persistent thin high layer, mostly consisting of aspherical particles, is presented
here. CloudSat CPR (Cloud Profiling Radar) observations detect the hydrometeor layer with a top
higher than that detected by the collocated ground-based cloud Doppler radar system (9.0 vs. 8.4 km)
and a base higher than that detected by the lidar system (7.1 vs. 6.5 km). The outcome of this work is
a step towards the use of CloudSat products for performing a decade-long cloud statistical analysis
over the poorly studied East Mediterranean region.

Keywords: clouds; microphysical properties; remote sensing; CloudSat

1. Introduction

Clouds play a crucial role in weather and climate, producing precipitation and im-
pacting the Earth’s radiation budget. The processes governing their formation, evolution,
geometrical, and microphysical properties, as well as their radiative effects, are far from be-
ing well understood [1]. State-of-the-art methodologies use combined lidar–radar satellite
observations to provide high-resolution vertical profiles of cloud properties. Combined
CloudSat and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observa-
tion) observations provided global cloud geometrical and microphysical properties from
2006 to 2017 (e.g., raDAR/liDAR product (DARDAR-MASK product); [2]). However, these
data have not been used to provide cloud statistics over the Mediterranean, and this is
partially attributed to the lack of evaluation studies of the products above the region. In this
study, we perform an evaluation of the CloudSat geometrical and microphysical products
using measurements performed in the framework of the Aerosol, Clouds, and Trace Gases
Research Infrastructure (ACTRIS; https://www.actris.eu/, accessed on 22 August 2023).
The performance of CloudSat in detecting hydrometeors and its accuracy in determining
the location of cloud tops and bases on a complex atmospheric scene over the Finokalia
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background station, on the island of Crete, in the eastern Mediterranean, are presented and
discussed.

2. Data and Methodology
2.1. Ground-Based Measurements

The ground-based data used in our study were acquired during the PRE-TECT experi-
mental campaign [3], the first ever Cloudnet campaign that was held in Greece [4]. The
campaign was organized by the National Observatory of Athens (NOA) in the framework
of the ACTRIS project and the ERC (European Research Council) project “Does dust Tri-
boElectrification affect our ClimaTe?” (D-TECT) and took place on 1–30 April 2017, at the
Greek Atmospheric Observatory of Finokalia (35.338◦ N, 25.670◦ E, 250 m asl), in Crete
(finokalia.chemistry.uoc.gr, accessed on 22 August 2023). Finokalia is a background station
(Figure 1b), far away from anthropogenic pollution sources, and is ideal for evaluating the
cloud evolution, lifetimes, and precipitation processes.
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synchronous orbit set to cross the Equator at 13:30 local time, repeating its ground track 
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http://cloudsat.cira.colostate.edu/dataICDlist.php?go=list&path=/2B-CLDCLASS, 

Figure 1. The PRE-TECT campaign Cloudnet station (a) and CloudSat overpass over Finokalia
background station (35.338◦ N, 25.670◦ E) in Greece on 11 April 2017 (b).

During the experiment, continuous observations of aerosols, clouds, and winds were
performed with high vertical and temporal resolution. We analyzed collocated measure-
ments from the PollyXT lidar system of NOA [5], the MIRA36 cloud Doppler radar sys-
tem [6] of the Italian National Research Council’s Institute of Methodologies for Environ-
mental Analysis (CNR-IMAA), the RPG microwave radiometer of the National Research &
Development Institute Optoelectronics (INOE), and the Halo Doppler wind lidar [7] of the
Finnish Meteorological Institute (FMI). These instruments are shown in Figure 1a.

2.2. Satellite-Based Observations

The CloudSat cloud profiling radar (CPR) [8,9] has been operating since 2 June 2006.
CloudSat flies in the A-Train constellation of satellites, along with the Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite (https://www-
calipso.larc.nasa.gov/, accessed on 22 August 2023). CloudSat operates at 95 GHz with
a sensitivity of −30 dBZ. Radar reflectivities are sampled every 240 m, with a vertical
resolution of around 480 m. Profile spacing is approximately 1 km along track, with a
volume resolution of 1.8 km along track and 1.5 km cross track. The A-train follows a
Sun-synchronous orbit set to cross the Equator at 13:30 local time, repeating its ground track
every 16 d. In this study, we use the 2B-GEOPROF (R05) radar reflectivity product [10,11]
and the 2B-CLDCLASS (R05) cloud type product ([12]; http://cloudsat.cira.colostate.edu/
dataICDlist.php?go=list&path=/2B-CLDCLASS, accessed on 22 August 2023). CloudSat
provides the classification of clouds into eight categories: stratus (St), stratocumulus (Sc),
cumulus (Cu), nimbostratus (Ns), altocumulus (Ac), altostratus (As), deep convective

https://www-calipso.larc.nasa.gov/
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clouds (Dc), and high-level clouds (Ci), according to their precipitation status, cloud-base
height (Hbase), cloud thickness (CTH), cloud-top height (Htop), cloud-top temperature, and
radar reflectivity factor (Ze).

3. Results

A case study of collocated lidar–radar ground-based and space-based observations
is analyzed to retrieve the cloud properties and discuss the CloudSat performance above
the eastern Mediterranean region (Figure 1b). The acquired ground-based radar and lidar
observations that are used for monitoring the hydrometeors above Finokalia are shown in
Figure 2 for 11 April 2017. The figure highlights the advantage of the combination of radar
and lidar instruments to identify cloud boundaries and phases. The two instruments have
complementary properties; the radar can penetrate even optically thick clouds and is more
sensitive to large particles (i.e., raindrops and snowflakes) than the tiny cloud droplets
typically formed in fog and optically thin clouds, whereas the lidar is much more sensitive
to the small cloud droplets and optically thin clouds while being rapidly attenuated in
optically thick clouds. In the example shown in Figure 2, the cloud radar was able to
detect the entire cloud structure above the station from 13:00 to 24:00 UTC, with the vertical
in-cloud extent exceeding 5 km, while the lidar was able to penetrate only the first 2 km
inside the cloud. In contrast, the lidar detected thin layers with high attenuated backscatter
coefficient values at altitudes between 3 and 4 km, from 06:00 to 12:00 UTC, which are
not visible from the radar. The MIRA36 cloud Doppler radar system’s reflectivity values
are found below the detection limit value (<−30 dBz) until 12:00 UTC, indicating the
presence of small cloud particles. The complementary observations of the PollyXT volume
depolarization ratio show that the majority of the particles in these layers are nonspherical,
in contrast to the surrounding targets, where spherical particles also prevail. Thus, the
combined information of the ground-based lidar and radar observations indicates the
coexistence of ice particles and water droplets in these layers in the presented case.
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At 10:41 UTC, CloudSat overpassed within 100 km of Finokalia station. The CloudSat
radar reflectivity and the CPR Cloud mask are presented in Figure 3. In this figure,
reflectivities associated with a “CPR_cloud_mask” value ≥ 30 indicate high confidence in
the cloud retrieval. Cloudsat monitors a deep cloud layer located between 2.5 and 10 km
inside the 2◦ × 2◦ domain and a thinner layer above Finokalia. The ground-based radar
retrievals ± 0.5 h of the overpass indicate the existence of high-level clouds, with a mean
base at 7.1 ± 0.4 km and a mean top at 8.2 ± 0.35 km. The cloud boundaries are also
calculated from the PollyXT by applying the wavelet covariance transform (WCT) to the
1064 nm signal, following the steps of [13]. Table 1 summarizes the geometrical boundaries
of the detected cloud layers from the collocated ground-based lidar/radar measurements
and the CloudSat products. CloudSat CPR observations detect the hydrometeor layer with
a top higher than that detected by the collocated ground-based cloud Doppler radar system
(9.0 vs. 8.4 km) and a base higher than that detected by the lidar system (7.1 vs. 6.5 km).
The CALIPSO retrievals at 11:38 UTC are also presented in Figure 4. The CALIPSO Cloud
Subtype also denotes the existence of aspherical particles (i.e., cirrus) over Finokalia station,
while the development of deep convective clouds was also observed in the broader region.
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Table 1. Cloud boundaries identified by ground-based lidar/radar retrievals and CloudSat for the
case study on 11 April, 2017, over Finokalia.

Instrumentation Base Top

MIRA36 7.2 ± 0.1 km 8.4 ± 0.35 km
PollyXT 6.5 km 8.3 km

CloudSat 7.1 ± 1.1 km 9.0 ± 1.4 km
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The homogeneous cloud scene above Finokalia station is also depicted in Figure 5.
The cloud phase flag reported by the EUMETSAT Satellite Application Facility on Climate
Monitoring, CM SAF, cloud product indicates the homogeneity of the cloudy scene, with
the presence of opaque clouds over Finokalia station and the existence of cirrus in the
broader area on 11 April 2017 at 08:11 UTC.
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4. Conclusions

In this work, the performance of Cloudsat in monitoring a complex atmospheric
scene over the background station of Finokalia in the eastern Mediterranean is presented,
showing a general agreement with the ground-based instrumentation. A case study of
a thin high cloud layer, mostly consisting of aspherical particles, is analyzed, and the
accuracy of CloudSat in determining the location of cloud tops and bases is evaluated
with the collocated ground-based lidar/radar instrumentation. The importance of accurate
cloud bottom retrievals is highlighted by [14], which reports on the existing limitations
and gaps in the accuracy of spaceborne radar measurements. In the future, we will extend
this study by evaluating the CloudSat geometrical and microphysical products over more
Mediterranean stations, combining lidar/radar retrievals. Our study is a step towards the
use of CloudSat products for a decade-long cloud statistic over this under-represented
region.
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