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Abstract: According to the recent IPCC report, the Mediterranean, and consequently the region of
Sitia, is one of the European “climate hotspots”. Its complex geomorphology and multiple locations
with very distinct microclimate characteristics make high-resolution climate projections critical
for the appropriate determination of effective local adaptation policies. The paper demonstrates
the significance of the dynamical downscaling of climate information from 20 km × 20 km to a
5 km × 5 km scale of temperature, precipitation, drought, and fire risk for the region of Sitia and
present, near-, and far-future climate projections using RCP4.5 and RCP8.5 scenarios.
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1. Introduction

In some regions and communities, climate adaptation based on low resolution data
will not be enough to mitigate the impacts of climate change on community systems
due to the lack of addressing the local microclimate. This could lead to increased risk of
failure of economic, financial, and industrial policies to sufficiently mitigate and adapt
to climate change, which is a primary concern for societies worldwide [1]. Within the
framework of the European-funded project New Enabling Visions and Tools for End-useRs
and stakeholders thanks to a common MOdeling approach towards a ClimatE neutral and
resilient society (NEVERMORE), the case study of the Municipality of Sitia, in Crete, Greece
is accordingly examined. Sitia, due to its complex geomorphological characteristics and
unique landscapes, calls for a better understanding of high-resolution climate features that
would lead to science-based adaptation decisions and support policy making at all scales
with high degree of confidence.

The Municipality of Sitia covers the Eastern part of the island of Crete (between
34◦90′ N to 35◦40′ N and 25◦85′ E to 26◦35′ E) with an area of 633.22 km2 and a popula-
tion of 20,268 inhabitants. It has considerable climate variability, with changes in mean
temperature and amounts of rainfall, mainly due to the influence of topography (great
mountain chains along the central part and other mountainous bodies) on the humid air
masses coming over the central Mediterranean Sea, as well as due to its extended coastal
zones and numerous islands (Figure 1). The Natural Park of Sitia is located in this region
(Sitia UNESCO Global Geopark), which is mainly a mountainous area, with the Zakros
Mountains dominating the landscape [2] and the lace-like coastline all along the shores,
and many Natura2000 spots [3].
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ing. The area experiences sustained high winds at the eastern part, and almost 300 sun-

shine days/year, with few but increasingly intensive rain events [7] and coastal erosion 

(especially southern coasts) that has been accelerated in recent years [6]. 
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Figure 1. Greek case study: Municipality of Sitia, Crete (green territory).

Sitia is one of the regions of the EU most exposed to climate pressures, mainly heat,
droughts, and wildfires [4], during summer periods due to its strong dependence on the
climate–agriculture–water–biodiversity–tourism nexus. Furthermore, the projected sea
level rise is over 1 m (by 2100) [5], and storm surges will induce unexpected changes
in the coastline due to coastal erosion [6]. Intense local scale weather patterns due to
highly complex topography and air–sea interaction are making a sound response very
challenging. The area experiences sustained high winds at the eastern part, and almost
300 sunshine days/year, with few but increasingly intensive rain events [7] and coastal
erosion (especially southern coasts) that has been accelerated in recent years [6].

This work is linked to a previous study [8] which derived fine resolution datasets for
Greece by downscaling EC-EARTH GCM data to 5 km, being unique in this so far. The
focus of this paper is the development of high-resolution climate data based on climate
change projections of temperature, precipitation, and the indices of SPI and FWI, using
RCPs scenarios [9] and the selection of suitable indicators for these parameters that were
further used in stakeholder engagement activities. These were co-produced with the local
community, allowing them to gain a better understanding of the spatiotemporal charac-
teristics of the local climate. The geomorphological complexity (e.g., extreme variation of
elevation) and vulnerability of the Municipality enhances the need for updated and reliable
information on climate change and higher resolution climate data.

2. Methodology

The following methodology was based on previous recent studies [10–13] and espe-
cially on [8], which successfully established confidence in the use of dynamically down-
scaled simulations. High-resolution climate historical and future validated datasets of
temperature and precipitation at 5 km of horizontal resolution [8,10–13] were derived from
the application of the non-hydrostatic weather research and forecasting model (WRF/ARW,
v3.6.1) [14] driven by EC-EARTH [15] global model’s simulations for near (2025–2049) and
far (2075–2099) future periods under RCP 4.5 and RCP8.5 scenarios, which specified the
boundary conditions for the assessment of climate change for the area of Greece. For the
need of climate risk assessment study for the area of Sitia, climate indices were estimated
related to extreme events, drought, and fire danger. The description and methodology
of the calculation of these indices is extensively described in Politi et al., 2022a, 2022b,
2023 [8,16,17].

The spatial distribution of elevation in two different grid resolutions is presented in
Figure 2. In the lower resolution grid of 20 km × 20 km (Figure 2A), the landscape of the
area appears mainly as a plain of lower altitudes, almost at sea level, with mountainous
areas grouped at the southern part of the region. However, in the higher resolution grid
(Figure 2B), the geomorphological complexity is revealed, showing how higher altitudes
and heterogeneous terrain cover a more extensive part of Sitia. In Figure 2C, the Corine
Land Cover, a land monitoring service by Copernicus, is demonstrated. The land use of
the area is mainly dedicated to permanent crops, agricultural areas, and shrub/vegetation.
Thus, since the geomorphological complexity and biodiversity are well established, the
necessity of finer resolution data in cases such as Sitia’s becomes evident.
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Figure 2. Left: elevation (m). (A) 20 km × 20 km resolution. (B) 5 km × 5 km resolution. Right:
(C) Municipality of Sitia’s land use.

3. Results
3.1. Temperature’s & Precipitation’s Dynamical Downscaling

The spatial distribution of mean temperature and mean annual precipitation in two
different grid resolutions are presented in Figure 3 based on the result of [13]. In the case of
temperature, in the lower resolution (Figure 3A), in some regions there is a bigger gradient
over mountainous areas and more detailed assessment of the eastern coast, as seen in
Figure 3B. Respectively, in the case of precipitation, the mean annual amount appears
to change in a similar and horizontal pattern across the region (Figure 3C), whereas in
(Figure 3D), it can be observed that high precipitation amounts are located at the western
and central parts of the region.
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3.2. Drought Index: Standardized Precipitation Index (SPI)

The future SPI’s projections, that were calculated as in [16], show in the RCP4.5
scenario of near-future projection (Figure 4C) that the inland demonstrates a near-zero
increase in duration of drought, reaching the highest peak both in the center and the eastern
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coast of Sitia’s Municipality (5.5 months) of the prefecture. It is pointed out that in many
areas no change is noticeable. In the same RCP scenario for far-future projection (Figure 4D)
the Municipality in overall showcases an increment with the minimum duration being
1 month up to 5.5 months of drought. In the inland are gathered the smallest increases
(1–2 months), as well as the greatest are located in the eastern coast again. On the other
hand, the RCP8.5 scenario of near-future projection (Figure 4E) oddly, no change or a
decrease of up to 3 months is presented in overall. The only appearance of increment is
at the south coast, and it remains limited (1–2 months). In the last RCP8.5 scenario for
far-future projection (Figure 4F) can be characterized as the projection with the greatest
variations of increases spatially. The discrepancies seem to be more intense, especially
between the south and the north of the prefecture, where in the former no changes coexist
with limited increment up to 2 months in drought’s duration, and in the latter the peak of
the drought’s span appears to be up to 4~5.5 months. According to the analysis, in future
drought projection (Figure 4C–F) in the near-future projections (Figure 4C,E,F), an increase
in SPI is observed in the eastern coast, where the capital of the Municipality is located. The
RCP4.5 scenario (Figure 4C,D), in which the increment of SPI covers the most of the region,
seems to be against expectations more ominous than the RCP8.5 scenario (Figure 4E,F),
in which not only is the increase in SPI spatially limited, but a decrease is noticed in the
near-future projection. The decrease in the SPI can be related to highly localized assessment
of the precipitation, made possible with high resolution modelling unearthing features not
available in coarser modelling simulations. Considering the historic spatial distribution of
SPI (Figure 4B), it can be suggested that regions with a historically high SPI duration will
show no change, or even a decrease (max ~3 months), in the RCP8.5 scenario (Figure 4E,F).
Furthermore, Figure 4C,D (RCP4.5 scenario) present an overall increment, with a focus on
the eastern coast, where the duration reaches ~5.5 extra months of drought.
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Figure 4. Left: SPI, duration in months, historic period of 1980–2004. (A) 20 km × 20 km resolution,
(B) 5 km × 5 km resolution. Right: SPI’s duration differences between (C) near-future (2025–2049)
and historic (1980–2004), RCP4.5 scenario, (D) far-future (2075–2099) and historic, RCP4.5 scenario,
(E) near-future (2025–2049) and historic (1980–2004), RCP8.5 scenario, (F) far-future (2075–2099) and
historic (1980–2004), RCP8.5 scenario.

3.3. Fire Index: Fire Weather Index (FWI)

The FWI indices (Figure 5) (calculated as [17]) show (Figure 5A,B) that the southern
coastline is more exposed to wildfire than the inland and northern coastline, in both
resolutions. The future FWI projections (Figure 5C,F) are proven to be incremental for each
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emission scenario (RCP4.5 & RCP8.5) in the near- and far-future periods. It is noteworthy
that in Figure 5E, a high contrast of the FWI threshold value of the 90th percentile is depicted,
where, in some areas, the FWI is decreasing. There is an increase in FWI at the southeast of
the region in all the projections. This time, the near-future projections (Figure 5C,E) suggest
an increase in the FWI, with the RCP8.5 scenario showing an odd contrast of decrease
(~61 days), where the neighboring grey grid cells appear to show no data. The mildest
change seems to be the far-future projection in the RCP4.5 scenario (Figure 5D), in which
areas of insignificant change in the FWI’s duration is shown. Considering the historic
spatial distribution of FWI (Figure 5B), it can be suggested that at the southern coast of
the region, where a high FWI preexisted, the increment will be ~30 more days of FWI.
Accordingly, on the areas such as the north of Sitia, where the FWI was historically low,
future projections remain low (0~10 days)
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Figure 5. Left: FWI threshold value of the 90th percentile, historic period of 1980–2004, in
(A) 20 × 20 km2, (B) 5 × 5 km2. Right: FWI’s duration (days) differences between (C) near-
future (2025–2049) and historic (1980–2004), RCP4.5 scenario, (D) far-future (2075–2099) and historic
(1980–2004), RCP4.5 scenario, (E) near-future (2025–2049) and historic (1980–2004), RCP8.5 scenario,
(F) far-future (2075–2099) and historic (1980–2004), RCP8.5 scenario.

4. Conclusions

The aim of this study was to highlight the insufficiency of a coarse grid resolution
(in this case, 20 × 20 km2) over small and highly complex geomorphology areas like the
Municipality of Sitia. It was demonstrated that using a finer resolution of 5 × 5 km2 of
dynamical downscaling is more revealing of and accurate to the actual situation concerning
temperature and precipitation. These variables can provide a highly detailed assessment
of the microclimate characteristics of the region, as demonstrated from the SPI and FWI
climate indices.

The more detailed spatial climate information about precipitation and temperature
can help distinguishing areas of tourism and agricultural interest that will potentially face
more extreme events such as flooding phenomena [18], severe droughts, and wildfires
more often, therefore having a greater impact in the future. One of the uses of such
information is the preparation of consultation meetings demonstrating data regarding
Sitia’s special climate conditions, as well as to cumulate useful opinions and technical and
policy recommendations on behalf of the local stakeholders group. The aim is to gain better
knowledge on the projected impacts and set the basis for participatory, risk-based policy
making.
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