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Abstract: The complete blood count (CBC), a cost-effective blood test, offers insights into the cell
composition of blood, including white and red blood cells and platelets. Novel inflammatory
biomarkers derived from combinations of CBC parameters include the neutrophil-to-lymphocyte
ratio, reflect systemic and local inflammation. In this retrospective study, we successfully leveraged
bioinformatics analysis to examine potential correlations between CBC biomarkers and climate
and environmental factors, including temperature, humidity, and rainfall, in Fokis, Greece for a
4-year period (2019–2022). Our findings provide valuable insights into how these environmental
factors might influence blood cell parameters in the general population.

Keywords: CBC biomarkers; neutrophil-to-lymphocyte ratio (NLR); inflammation; apparent
temperature (AT)

1. Introduction

Inflammation is an adaptive process to the noxious stimuli that the human body is
constantly exposed to, including a wide range of physiological reactions varying from a
local inflammatory response to a full-blown systemic inflammation [1]. The dysregulation
of this complex sequence of events that consists of the inflammatory response is the
common denominator in the pathophysiology of many diseases [2]. Associations between
meteorological conditions and inflammation have been demonstrated in several studies
from around the world [2,3], primarily in patients with cardiovascular diseases [4,5], but
also in conditions involving arthritis and joint pain [6,7].

The complete blood count (CBC) is a fast, inexpensive and accessible blood test that
provides information regarding the quantitative and qualitative characteristics of the blood
cells’ subpopulations (white blood cells, red blood cells, platelets) and is a valuable tool for
the diagnostic approach of practically every disease. Recently, CBC-derived ratios, such
as the NLR (neutrophil to lymphocyte ratio) and PLR (platelet-to-lymphocyte ratio) have
been proposed as useful alternative inflammatory biomarkers which can be potentially
used for the diagnostic and prognostic assessment of various medical conditions such
as cardiovascular, neurological, autoimmune, neoplastic and psychiatric diseases [8–13].
The effects of meteorological parameters on human health is widely studied, but mostly
with regard to specific pathological conditions, such as seasonal infections [14], cardio-
vascular diseases [15,16], autoimmune diseases [17,18], neurological diseases [19,20] and
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mental disorders [21,22], allergies [23,24] and dermatitis [25,26]. There are quite a few
studies which aim to determine the association between meteorological parameters and
inflammation as the baseline of most pathologies [27,28]. This research work highlights the
potential influence of weather changes on the exacerbation of various diseases based on
inflammatory mechanisms. This study focuses on NLR, a novel inflammatory biomarker,
and its association with meteorological changes.

Our purpose is to study the association between the novel inflammatory index NLR
and meteorological parameters such as apparent temperature (AT), humidity, rain and
wind speed.

2. Materials and Methods

Demographic (sex, age) and CBC data from 10,075 individuals (5359 men, average age
52.3 years; 4716 women, average age 53.6 years) residing in the area of Fokis, Greece were
retrieved from the Laboratory Information System (LIS) database of the Medical Laboratory
Department of General Hospital of Amfissa. These individuals underwent routine blood
tests over a four-year period (2019–2022). The data were properly anonymized prior to
being further processed. Corresponding daily meteorological data, including maximum,
mean, and minimum temperatures (◦C) and mean relative humidity (RH%), were sourced
from the National Observatory of Athens’ meteorological site, operational since June 2018,
in Amfissa.

The neutrophil-to-lymphocyte ratio (NLR) was determined by dividing the absolute
neutrophil count by the absolute lymphocyte count, the values of which were derived using
the CBC [29]. The apparent temperature (AT) was calculated according to the methodology
proposed by Niu, Gao et al. [30], whereas, in order to analyze the lag–exposure–response
relationship between AT/humidity and NLR, we took into consideration the respective
daily data and their weighted average over 3, 5 and 7 days. Analysis of Variance (ANOVA)
in the R package was used to determine the main factors that determine NLR’s variance.
All results were crossmatched with ANOVA and Linear Regression from SPSS v20. Further
analysis was implemented using the Random Forest package in R.

3. Results

The main factors that determine NLR’s variance are shown in Table 1.

Table 1. ANOVA results, indicating main factors of NLR variance in the full dataset and subsets.

Anova with Full Dataset Age ≤ 73 Age > 73

F value Pr(>F) F value Pr(>F) F value Pr(>F)

Gender 0.27 0.605 7.13 0.008 ** 29.86 <0.001 ***

Age 259.72 <0.001 *** 15.89 <0.001 *** 34.82 <0.001 ***

Mean_Temp 21.77 <0.001 *** 23.17 <0.001 *** 3.53 0.061 .

Max_Humidity 1.12 0.291 0.00 0.983 1.34 0.248

Min_Humidity 2.21 0.137 1.52 0.218 0.94 0.333

RAIN 0.43 0.513 0.40 0.526 1.48 0.225

AVG_Wind_Speed 6.49 0.011 * 5.12 0.024 * 1.54 0.215

Max_Wind_Speed 0.56 0.454 0.10 0.757 0.08 0.777

AT 1.52 0.217 0.25 0.62 1.50 0.22

AT3daysLag 0.43 0.511 0.27 0.601 1.99 0.159

AT5daysLag 3.77 0.052 . 1.78 0.182 1.56 0.212

AT7daysLag 1.10 0.295 0.50 0.48 0.44 0.506
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Table 1. Cont.

Anova with Full Dataset Age ≤ 73 Age > 73

Max_Humidity_3daysLag 0.35 0.552 0.78 0.376 0.18 0.675

Max_Humidity_5daysLag 4.06 0.044 * 4.83 0.028 * 0.30 0.585

Max_Humidity_7daysLag 4.01 0.045 * 4.55 0.033 * 0.38 0.54

TempCategory 0.40 0.526 0.25 0.62 1.16 0.281

RaiseCategory <0.01 0.952 0.16 0.685 0.13 0.715

Significant codes: *** 0.001, ** 0.01, * 0.05, ‘.’ 0.1, ‘ ’ 1.

Age and mean daily temperature emerged as the main factors, whilst average wind
speed (p = 0.0108), maximum humidity with 5 (p = 0.0438)- and 7 (p = 0.0438)-day lag also
had statistically significant contributions. Also, the weighted average of AT for 5 days
(p = 0.0523) had marginal statistical significance and in research at a larger scale, it could
become significant. All results were crossmatched with ANOVA and Linear Regression
from SPSS v20. With age established as the primary predictor for NLR, we employed
decision trees for our analysis, utilizing the RPART package in the R programming language
(Figure 1). Age at 73 years was revealed as a split factor for NLR, providing further evidence
for aging and the ability to adapt to weather conditions.
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Figure 1. Classification results, indicating 4 main age groups for which different weather conditions
affect NLR.

The main dataset was split in two sub-datasets, one with the records with ages of
over 73 years, and the other with the records with ages of 73 years and below. RPART
and ANOVA were used in these two sub-datasets, providing the following results. For the
subset of below-73-year-old individuals, individuals with an age up to 15 years seem to be
affected by the5-day weighted average of AT and the weighted average of humidity for
5 and 7 days (Figure 2). From ages 15 to 73, daily average temperature, AT and maximum
wind speed contribute in NLR prediction (Figure 2).

For the individuals over 73 years old, minimum humidity at high values, AT and
weighted AT over 7 days seem to determine NLR values (Figure 3).ANOVA in the subset
of individuals below 73 years old confirmed the results of RPART, having as the main
factors age (p < 0.001), average daily temperature (p < 0.001), gender (p = 0.008), daily
average wind speed (p = 0.02), and the weighted average of 5 (p = 0.03)- and 7 (p = 0.03)-day
maximum humidity. In the subset of individuals over 73 years old, analysis of variance
(ANOVA) reaffirmed the results from the recursive partitioning analysis (RPART). Age
(p < 0.001) and gender (p < 0.001) were identified as the primary contributors to the variance
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in NLR. Interestingly, average daily temperature (p < 0.06) might also play a role, although
its level of significance is marginal. This suggests that while age and gender are the key
factors influencing NLR, daily temperature could potentially have a subtle influence as
well, though more research is needed to confirm this finding.
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Figure 3. Classification results for the over-73-years-old subgroup indicating subgroups and factors
contributing to segmentation.

Age is the trait that has the highest importance in group prediction (mean decrease
in accuracy) and highest contribution to the node homogeneity (mean decrease in Gini
Index) (Figure 4). Gender and an AT rise over a 3-dayperiod appear to only contribute
to node homogeneity. AT either daily or with a 3- or 7-day delay seems to contribute to
group prediction, while humidity (either daily, or with a 3-, 5- or 7-day delay) seems to
contribute to both group prediction and node homogeneity. Wind speed and rain are also
considered factors in model accuracy and homogeneity. This suggests that while age is
the predominant factor in predicting group membership, environmental factors such as
temperature, humidity, wind speed, and rainfall also have some influence. These findings
contribute to our understanding of the complex interplay between environmental factors
and health, potentially providing new insights for future research and health policy.
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Figure 4. Random Forest (ntrees = 500) Gini Index results (mean decrease in accuracy and mean
decrease in Gini Index).

4. Discussion

A significant positive effect between meteorological parameters and NLR levels was
found in this study. Gender, age and mean daily temperature have emerged as major factors
contributing to the shaping of NLR’s variation in the general population, whereas humidity,
average wind speed and rain also affect NLR’s levels. These conclusions are strongly
supported by the results of the statistical analysis performed on our study population.
According to our findings, age has the most powerful effect in NLR’s variation, revealing
the age of 73 years as a distinct boundary between two subgroups. In individuals under
73 years of age, apart from gender, mean daily temperature (p < 0.001) is a potent contributor
to NLR’s variation, whereas average wind speed and maximum humidity on the 5th and
7th lag day also a play a role, albeit a less important one (p < 0.05). On the other hand,
in individuals over 73 years of age, gender and age are the predominant modulators of
NLR’s variation. Our findings are consistent with the results of Lin, Hottenga et al. [31],
who successfully determined the factors which affect variation of NLR and PLR in a twin
study. In summary, the association between meteorological changes and NLR can help
us to better understand not only the clinical course of several conditions and the way the
observed exacerbations reflect the influence of weather conditions on them, but also the
value of NLR as an inflammatory biomarker with the potential to be further utilized for the
evaluation, monitoring and prognosis of diseases with an inflammatory background.
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