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Abstract: Weather prediction is a key aspect of today’s society and its activities. Accurate predictions
are crucial for efficiently organizing human activities, particularly in the agricultural, transportation
and energy sectors. In this paper, two deep neural networks, designed based on a long short-term
memory architecture, are developed to predict the occurrence of rainfall events and the respective
amount of rainfall on the island of Nisyros in the south Aegean Sea. Two deep neural networks are
developed, serving two different learning tasks. The first network acts as a classifier that assesses
whether it is going to rain or not and, sequentially, the second network performs a regression task,
quantifying the anticipated amount of rainfall. The performance of such prediction models is highly
dependent on input sequences. Among others, the lookback time window shapes those input
sequences by determining the number of past time steps to be taken into account. The ideal time
window for the classifier involves 24 time steps (i.e., 4 h), resulting in increased accuracy levels
exceeding 96.45%. The predictions of the regression model, which has the same lookback time
window, feature low errors, measured as 6.635 and 1.411 mm using the mean-square-error and
mean-absolute-error indices, respectively.

Keywords: Deep Neural Networks; short-term forecasting; LSTM; rainfall

1. Introduction

Weather prediction has a vital role in modern societies, allowing for the efficient
organization of human activities. Accurate predictions are key enablers of the adoption of
management schemes that aim to achieve sustainability and risk minimization, particularly
for the sectors of energy, transportation and agriculture.

Currently, there are many applications for machine learning models that have been
proven successful in predicting weather [1–4]. Machine learning models are capable of
finding complex patterns in data and performing tasks such as classification and regression.
Often, weather forecasting is classified as a time series problem, meaning it deals with
observations over time that are somehow interdependent. Artificial neural networks and,
in particular, deep neural networks (DNNs) based on long short-term memory (LSTM)
architecture are being developed to efficiently handle long dependencies among such data
sequences. DNNs and networks based on LSTM are often employed for solving both long
and short-term forecasting problems [5–8].
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In this paper, a set of two deep DNNs was developed based on the LSTM architecture
and used sequentially for the short-term prediction of rainfall event occurrence and rainfall
amount, respectively. The exploited dataset is registered to a weather station located on the
island of Nisyros, which lies in the south Aegean Sea and has a semi-arid climate.

Acknowledging the above, the rest of this paper is organized as follows. In Section 2,
the region under concern is presented, followed by a description of the modeling frame-
work. In Section 3, the results are presented, demonstrating the forecasting capability of
the proposed solution. In Section 4, a discussion takes place about the models’ capacity to
accurately predict rainfall, potential modeling improvements, and planned experiments. In
Section 5, the conclusions of this paper are listed.

2. Materials and Methods
2.1. Data Resources

The measurements of the weather parameters are registered at a weather station
located on Nisyros (latitude: 36.6◦, longitude: 27.2◦, elevation: 5 m), a small-sized island
that lies in the south Aegean Sea. The weather station has been installed and maintained by
the National Observatory of Athens [9] since 06/2017. The climate of Nisyros is considered
hot and semi-arid, with less than 50% of the total rainfall events exceeding 0.2 mm, as
shown in the histogram of Figure 1.
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Figure 1. Histogram of the amount of rainfall events and the respective amount of rainfall. X axis
denotes the amount of rain (mm) and Y axis the number of occurrences. In the 0.2 mm bin, 50% of
the events are contained.

The available measurements of the weather station have a 10 min frequency. The
dataset consists of 242,064 measurements and 10 columns. Each column corresponds to a
different parameter, which are the following:

• Mean, highest, lowest temperature in ◦C.
• Relative humidity in percentage.
• Atmospheric pressures in kPa.
• Wind speed in m/s.
• Highest speed in the horizontal plane in m/s.
• Wind direction in degrees.
• Rainfall in mm.
• Timestamp of the measurement.

Regarding the dataset’s preprocess, initially, the null values are removed, resulting in
a dataset with 220,365 samples. Subsequently, the dataset is standardized. To do so, the
following steps were taken:
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1. The dataset is split into the train, validation and test set at a ratio of 0.6, 0.2 and 0.2,
respectively.

2. The mean and the standard deviation of the train set are computed.
3. The computed mean is subtracted from the values of each set and, subsequently, the

values of each set are divided by the computed standard deviation.

Using the statistical indices computed with the train dataset ensures no data leakage.
The dataset used for the classification model contains 2550 events of rain in the span of

4 years, spanning from 1/2017 to 12/2021. To balance the dataset, another 2550 sequences
of non-rain events were added via the act of randomly sampling the dataset. The regression
dataset is built using sequences that only contain rain events. As expected, and as validated
via experimental analysis, the regression model produces predictions that underestimate
the ground truth when non-rain events are included in the sequences.

Thereafter, both datasets are sequenced using values from the past within the lookback
window as features and a value in the future as a label. The window prediction is considered
as a hyperparameter and will be tuned during the training phase. The feature–label pairs
are formed using Equation (1) for the classification model and Equation (2) for the regression
model, which maps time series features X with the next time step’s value label y:

X[t: t + w]→ y[t + w + 1] (1)

and:
X[t: t + w] + y[t + w]→ y[t + w + 1] (2)

where t is the time step, and w is the window size of the model.

2.2. Machine Learning Pipeline and the Architecture of the Models

The developed machine learning pipeline, which is shown in Figure 2, consists of the
following steps:

1. Data collection and transformation. Data are collected from the meteorological station
with a 10 min frequency and transformed, as already explained, in order to become
consumable by the machine learning models.

2. Classification. The data are consumed using a classification model, namely, the deep
LSTM classifier, which dictates whether a rainfall event will occur in the next time
step. In case of a rainfall event, the classifier outputs one, or otherwise zero.

3. Regression. If a rainfall event is predicted, the execution of a second machine learning
model is triggered. The model, i.e., the deep LSTM regressor, assesses the amount of
the anticipated rainfall, using the same input as the deep LSTM classifier.
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The forecasting horizon is 10 min for both models. The development and the training
of the models was carried out using PyTorch [10], a Python wrapper of a machine learning
library that enables high-performance computations.

2.2.1. Deep LSTM Classifier

Regarding the architecture of the classifier, there is an LSTM in the first layer. At the
top of it, several dense layers are stacked. These are followed by the output layer, i.e., a
sigmoid function.

The sigmoid function is chosen because there are two classes. The first class corre-
sponds to an occurrence of a rainfall event and the output of the sigmoid function, after
rounding it, is one. The second class corresponds to non-events and the output of the
sigmoid function, after rounding it, is zero.

The number of dense layers in the network and the nodes number in each layer of the
network are defined during the training phase using Ray Tune [11], a hyperparameter grid
search tuner.

The loss function used in the training phase is the binary cross-entropy loss. The
model is trained using 10 features, corresponding to the columns of the dataset, as listed in
Section 2.1.

2.2.2. Deep LSTM Regressor

The architecture of the deep LSTM regressor includes an LSTM as the first layer,
followed by several dense layers and the output layer, which has a single node that applies
a linear transformation in its input. The deep LSTM regressor outputs the amount of rain
for the upcoming event and is triggered by the anticipation of a rainfall event.

The number of dense layers in the network and the number of nodes in each layer
of the network are defined during the training process in a similar fashion to the deep
LSTM classifier.

Because the deep LSTM regressor is used only in the case of an upcoming (predicted)
rainfall event, it is trained using data that contain only such events. To do so, a new time
series is built including values within a predefined time window that includes the rainfall
event and certain time steps before and after.

The loss function used for the training phase is the mean-square-error. The inputs
of the deep LSTM regressor are those used for the deep LSTM classifier, plus the current
rainfall amount.

2.2.3. Tuning of the Hyperparameters

The hyperparameters are tuned using a grid search approach. The implementation is
based on the Ray Tune scheduler [11]. The hyperparameters to be tuned and the search
field of their optimal values are shown in Table 1. For each combination of these hyperpa-
rameters, a new neural network is built, trained and tested.

Table 1. The hyperparameters to be tuned and their search space.

Nr. Hyperparameter Search Space

1 Lookback time window 1 to 24 time steps 1

2 Number of dense layers 1 to10 layers
3 Number of neurons 2 ˆ i, where i = 0, 1, . . ., 10
4 Learning rate of the training algorithm 9 × 10−6, 9 × 10−1

1 Each time step corresponds to 10 min.

3. Results

The best architecture for the deep LSTM classifier includes six hidden layers with
1000 nodes each, trained with a learning rate of 6× 10−6 and a time window of 24 (4 h). The
model achieved accuracy = 96.45%, precision = 97.78%, recall = 94.82% and AUC = 96.41%.
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The best architecture for the deep LSTM regressor comprises one hidden layer with
100 nodes and is trained with a learning rate of 9 × 10−5 and a time window of 24 (4 h).
The model achieved an MSE = 6.635, MAE = 1.417 and MAPE = 1.235. In Figure 3, the
actual amount of rainfall is compared with the predicted amount.
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4. Discussion

The results show that the deep LSTM models are capable of predicting both the
occurrence of rain events and the amount of rain with increased levels of accuracy. Also,
since the weather station rainfall sensor has a resolution of 0.2 mm and given that the
predictions can be rounded to the nearest value, the forecast errors are even smaller,
matching the 0.2 mm intervals. The predictive capability, and the fact that only in situ
measurements were taken into account as inputs in the machine learning pipeline, make
the proposed solution consistent with the requirements of real-world applications.

The future work of the present study is based on three pillars. The first includes
tests of different machine learning technologies. In particular, the predictive capability
of machine learning models featuring the attention mechanism and models based on
transformers will be assessed. The second pillar includes tests regarding the forecasting
horizon and its extension. The third pillar concerns transfer learning, meaning the reuse
of the presented models (i.e., trained using data registered to the island of Nisyros) to
predict rainfall events and the amount of rainfall in a nearby island, namely Tilos, where
data are continuously collected from a weather station and where the climate has similar
characteristics to Nisyros.

5. Conclusions

In the present study, a machine learning pipeline was developed using solely in situ
data registered to a meteorological station located on the island of Nisyros in the South
Aegean Sea in Greece. The dataset contains rainfall, mean, lowest and highest temperature
measurements as well as measurements of the relative humidity, the atmospheric pressure,
the wind speed, the highest wind speed in the horizontal plane, and the wind direction.
These features are used to train two machine learning models. The first model, namely
the deep LSTM classifier, performs classification, predicting whether it is going to rain in
the near future (10 min forecasting horizon). The second model, namely the deep LSTM
regressor, predicts the amount of rainfall, having the same forecasting horizon and inputs
as the former network. Each model is trained using time series data that contain exclusively
rain events. The length of the time series as well as the number of the networks’ layers are
treated as hyperparameters and determined during the training phase using a grid search
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approach. The results show that the developed models are suitable for short-term rainfall
forecasts, having MAEs of 1.4 mm. Also, the proposed machine learning pipeline triggers
the execution of the deep LSTM regressor only when the classifier predicts the occurrence
of a rainfall event, reducing the computational requirements while allowing for the use of a
dataset that contains exclusively rainfall events in the regressor’s training process, which,
in turn, results in increasing forecasting performance.

Author Contributions: Conceptualization, I.C. and G.T.; methodology, I.C.; software, I.C.; validation,
I.C., G.T. and D.I.; formal analysis, I.C.; investigation, I.C.; resources, G.T.; data curation, G.T.; writing—
original draft preparation, I.C.; writing—review and editing, G.T.; visualization, I.C.; supervision,
N.D.L. and A.S.; project administration, A.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was co-financed by the European Union and Greek national funds through the
Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—
CREATE—INNOVATE (Project Code: T2EDK-01578).
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