
Citation: Papachristopoulou, K.;

Tsekeri, A.; Kouklaki, D.; Raptis, P.I.;

Marinou, E.; Amiridis, V.; Fountoulakis,

I.; Kazadzis, S. Surface Shortwave

Radiation Measurements and

Modeling under Intense Desert Dust

Conditions. Environ. Sci. Proc. 2023,

26, 15. https://doi.org/10.3390/

environsciproc2023026015

Academic Editors: Konstantinos

Moustris and Panagiotis Nastos

Published: 23 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Surface Shortwave Radiation Measurements and Modeling
under Intense Desert Dust Conditions †

Kyriakoula Papachristopoulou 1,2,* , Alexandra Tsekeri 2, Dimitra Kouklaki 1, Panagiotis Ioannis Raptis 1 ,
Eleni Marinou 2 , Vasilis Amiridis 2 , Ilias Fountoulakis 2,3 and Stelios Kazadzis 4

1 Laboratory of Climatology and Atmospheric Environment, Department of Geology and Geoenvironment,
National and Kapodistrian University of Athens, 15784 Athens, Greece; dkouklaki@geol.uoa.gr (D.K.);
piraptis@meteo.noa.gr (P.I.R.)

2 Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of
Athens (IAASARS/NOA), 15236 Athens, Greece; atsekeri@noa.gr (A.T.); elmarinou@noa.gr (E.M.);
vamoir@noa.gr (V.A.); ifountoulakis@academyofathens.gr (I.F.)

3 Research Centre for Atmospheric Physics and Climatology, Academy of Athens, 11521 Athens, Greece
4 Physikalisch Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC),

7260 Davos, Switzerland; stelios.kazadzis@pmodwrc.ch
* Correspondence: kpapachr@noa.gr
† Presented at the 16th International Conference on Meteorology, Climatology and Atmospheric

Physics—COMECAP 2023, Athens, Greece, 25–29 September 2023.

Abstract: Desert dust atmospheric aerosols play an important role in the Earth-atmosphere system
and constitute a key agent for the Earth’s climate through their radiative processes. However, dust
radiative effects are still subjected to large uncertainties, due to the uncertain estimates of their optical
properties. A radiative closure study, under cloudless sky, using measurements and model results of
shortwave radiation at the Earth’s surface was performed. All measurements were gathered under
Saharan dust conditions during the ASKOS campaign at Mindelo, Cabo Verde. Radiation measure-
ments were compared with radiative transfer simulations, using as input concurrent retrievals of
dust optical properties.
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1. Introduction

Dust aerosols have a significant impact on the Earth system. Dust likely cools the
climate and, due to its increase since the pre-industrial era, partially counteracts the
warming caused by greenhouse gases [1]. Those estimates are, however, highly uncertain,
mainly due to uncertainties in quantifying dust direct radiative effects (DREs), which
can be reduced by using more accurate dust optical properties, e.g., from observations
(in situ and remote sensing) [1]. For example, it has been found that coarse and super
coarse dust particles warm the Earth system through their direct radiative effects, with
implications for clouds and precipitation; however, they are substantially underestimated
in current models [2]. Accurate representation of atmospheric conditions is also important
for the determination of the dust radiative effects. Recent observations have shown that
the increased water vapor in the upper Saharan Air Layer (SAL) with increased dustiness
is associated with increased heating in the dry lower SAL and less negative dust direct
radiative effect at TOA by 17% [3].

To reduce the uncertainties in dust aerosols’ climate effects, field experiments are
needed along with closure studies (e.g., [4]). In this study, clear sky shortwave (SW)
ground-based measurements under intense Saharan dust conditions during the ASKOS
campaign at Mindelo, Cabo Verde (CV), in summer 2022, were compared with radiative
transfer model (RTM) outputs based on concurrent measured aerosol optical properties and
other important atmospheric parameters. The radiative fluxes on surfaces is an essential
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climatic variable, and closure studies, such as the one presented herein, contribute to their
accurate quantification under dusty conditions.

2. Materials and Methods

All measurements utilized in this study were gathered under Saharan dust conditions
during the ASKOS campaign at Mindelo, CV. The campaign took place during summer
2022 when the dust transport above the area experiences its yearly maximum. ASKOS
deployed advanced ground-based remote sensing and surface/airborne in situ instrumen-
tation providing atmospheric parameters, including aerosols. Actinometric measurements
were also performed. We focused on days with intense aerosol loads and cloudless sky
conditions. Six days in the period June–September 2022 met those requirements for at least
three consecutive hours, all in July 2022. For all days, the data are available for almost the
same period of the day, 14:00–17:45 UTC or solar zenith angles (SZA) 6◦ to 55◦. Table 1
summarizes the datasets utilized in the current study.

Table 1. Datasets utilized in the current study, from the ASKOS campaign at Mindelo, Cabo Verde,
summer 2022.

Parameter

Cimel/AERONET
Level 1.5 products

Aerosol Optical Depth (AOD) at 500 nm
Angstrom Exponent (AE) 440–675 nm

Single Scattering Albedo (SSA), mean from
440–500–675–870 nm

Precipitable Water Vapor (PWV)

Pyranometer
(280–2800 nm)

Global Horizontal Irradiance
(GHI)

The global horizontal irradiance (GHI) measurements (1 min frequency) were com-
pared with simulations performed with the UVSPEC RTM included in the libRadtran
package [5,6]. The simulations were performed using as input the concurrent AERONET
retrievals (5 min frequency) of dust optical properties and PWV (Table 1). The GHI
measurements were synchronized with the simulations at 5 min frequency, and GHI
differences were calculated in absolute (modeled-measured) and relative terms ((modeled-
measured)/measured ∗ 100%).

3. Results and Discussion
3.1. Atmospheric Conditions

AOD values ranged from 0.3 to 0.7 for the six selected days (Figure 1), with AE values
below 0.3 indicating the presence of coarse particles with SSA values greater than 0.94. The
second day studied (10 July 2023) was a day with a maximum AOD of 0.7, corresponding
to AE value close to 0.05 and high values of PWV, up to 40 mm. This combination of
atmospheric conditions resulted in very low GHI values (not shown).

3.2. Shortwave Radiative Closure at Surface

In this section, the comparison between the measured and the corresponding modeled
values of GHI is presented for all days. All GHI relative differences (Figure 2a) were
between −2.1 and 3.1% (−15 and 26 W/m2), with 96% of the data within ±2%. Radiative
closure was confirmed for 75% of the cases, which had differences in GHI within ±10 W/m2.
The modeled GHI mostly overestimated measurements with a mean GHI difference of
4.4 ± 7.8 W/m2 (or 0.4 ± 1%), which is within measurement uncertainties. This slight
overestimation may be attributed to the aerosol-related inputs. We further investigated
those changes with the available aerosol and atmospheric parameters. It was found that
those changes were invariant with increasing AOD (Figure 2b) and PWV (not shown).
The comparison of those changes with SSA revealed that the bigger GHI differences were
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found for the day with the highest value of SSA, but further investigation is needed (see
next paragraph).
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Figure 2. (a) Relative frequency of the GHI relative differences (%); (b) GHI differences versus AOD
550 nm.

Table 2 presents the mean values and standard deviation of the absolute and relative
GHI differences per day, along with the aerosol and water vapor input parameters to the
RTM. The greatest value of GHI overestimation was found for a day with a relatively low
mean AOD (0.37), which was a day with an SSA value close to 1 and relatively low PWV
(25.3 mm). AERONET SSA retrievals are quality-assured for cases with AOD > 0.4, thus,
the SSA value for the specific case may be associated with high uncertainty.
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Table 2. Mean values and standard deviation of AOD at 550 nm, AE 440–870 nm, SSA and PWV
(in mm), July 2022 ASKOS campaign at Cabo Verde and GHI absolute and relative differences.

Day AOD AE SSA PWV (mm) SZA (◦)
Range

GHI Diff.
(W/m2) GHI Diff. %

01 July 0.31 ± 0.01 0.19 ± 0.01 0.98 32.9 ± 0.4 8.7–50.9 3.5 ± 6.0 0.4 ± 0.7

10 July 0.58 ± 0.04 0.11 ± 0.02 0.96 38.5 ± 0.4 6.5–53.1 6.6 ± 6.4 0.7 ± 0.8

11 July 0.56 ± 0.03 0.15 ± 0.02 0.95 29.1 ± 2.7 6.3–54.0 5.2 ± 6.3 0.6 ± 0.8

12 July 0.42 ± 0.02 0.20 ± 0.03 0.94 28.4 ± 0.4 7.0–54.3 −1.3 ± 4.9 −0.3 ± 0.7

13 July 0.49 ± 0.01 0.15 ± 0.01 0.96 25.1 ± 1.7 6.3–54.2 1.1 ± 7.6 0 ± 1.0

14 July 0.37 ± 0.02 0.15 ± 0.01 0.99 25.3 ± 0.8 6.1–45.0 12.4 ± 7.8 1.4 ± 0.8

4. Summary and Outlook

A radiative closure study under clear sky conditions was performed using mea-
surements and RTM model outputs of surface SW radiation under intense Sahara dust
conditions in July 2022, during the ASKOS campaign at Cabo Verde. According to our
results, radiative closure of surface GHI (i.e., differences between modeled values and
measurements within ±10 W/m2) was attained for 75% of the cases (96% of cases within
±2%), using as inputs concurrent retrievals of dust optical properties and PWV. SSA was
found to be the parameter related to the higher deviations, although further investigation is
needed to reach safer conclusions. Other parameters related to mineralogy, shape, and size
should be considered for the radiative closure to be confirmed under certain conditions. The
preliminary results of this study along with the future work aim to contribute to knowledge
gaps on dust radiative effects using unique—in terms of location and quality—experimental
campaign data.
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