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Abstract: The overarching objective of the present study is to assess the quality of the CALIOP–
CALIPSO aerosol retrievals towards understanding their advantages and deficiencies. Such analysis
is a prerequisite prior to their utilization in a radiation transfer model (RMT) for estimating the clear-
sky shortwave (SW) aerosol-induced direct radiative effects (DREs) within the Earth–Atmosphere
system. The study region encompasses North Africa, the Middle East, and Europe (NAMEE domain),
and the period of interest ranges from 2007 to 2020. A holistic approach has been adopted involving
spaceborne retrievals (CALIOP–CALIPSO and MODIS-Aqua) and ground-based measurements
(AERONET). Overall, CALIOP underestimates columnar aerosol optical depth (AOD), particularly in
dust-rich areas, attributed to various factors (e.g., lidar ratio). In order to demonstrate the significance
of an appropriate definition of the lidar ratio, focusing on DREs, three example dust cases are
investigated. The CALIPSO dust extinction coefficient profiles are used as inputs to the libRadtran
Radiative Transfer Model (RTM) along with other crucial parameters. For each study case, two RTM
runs are performed using the default (CALIPSO) and an updated (DeliAn) dust lidar ratio. Our
results indicate remarkable differences (up to ~22%) on the surface and atmospheric DREs while
varying from 17% to 27% at TOA.

Keywords: CALIOP–CALIPSO; aerosol-radiation interactions; RTM; SW; DREs; NAMEE;
MODIS-Aqua; AERONET

1. Introduction

Atmospheric aerosols through their direct and indirect interactions with incoming
shortwave (SW) and outgoing longwave (LW) radiation perturb the radiation budget
of the Earth–Atmosphere system, subsequently affecting atmospheric processes across
various spatiotemporal scales [1]. The present-day estimates of the SW direct radiative
effects (DREs), resolved by the current state-of-the-art climate models, show that aerosols,
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at a global scale and over long-term periods, tend to cool the Earth–Atmosphere sys-
tem, partly counterbalancing the induced planetary warming by the greenhouse gases
(GHGs). However, global climate models continue to give diverging results regarding the
DRE magnitude.

Since June 2006, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on
board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
satellite has provided a new perception of aerosols and cloud observations [2]. CALIOP
(version 4.2) Level 2 aerosol classification scheme utilizes Level-1-layer-intergrated values
of depolarization and attenuated backscatter along with ancillary information about the
geographical location, the surface type, and layer altitude in order to assign aerosol types [3].
CALIPSO vertically resolved aerosol observations can be utilized for the assessment of
aerosol–radiation interactions, acknowledging that, among the factors determining DREs
and assuming clear-sky conditions, the aerosols’ load, type, vertical structure, and optical
properties are the most crucial. However, previous evaluation studies have demonstrated
inherent deficiencies that should be defined and addressed prior to a robust estimation of
aerosol-speciated DREs.

2. Data and Methodology

Aerosol retrievals. For the purposes of this study, we processed the quality-assured
(QA) CALIPSO Level 2 (L2) Version 4.2 (V4) vertically resolved retrievals extracted from
the LIVAS database [4]. A series of quality controls was applied ensuring the mitigation of
the negative impact on aerosol retrievals due to (i) layer misdetection and misclassification,
(ii) extinction retrieval errors, and (iii) biases caused by the negative signal anomaly. In
addition, the possible cloud contamination has been minimized relying on the CAD score
and the misclassified cirrus fringe filters [5]. AERONET observations of AOD, single
scattering albedo (SSA), asymmetry factor (ASYM), and Ångström exponent (AE) were also
exploited for the purposes of this study. For the collocation, CALIPSO retrievals residing
within a circle, centered at the AERONET site, of a 100 km radius were spatially averaged,
whereas AERONET observations within a ±30 min time window, centered at the CALIPSO
overpass, were temporally averaged.

Radiative transfer model. For the Radiative Transfer (RT) simulations, in the SW
spectral range (280–3000 nm), the UVSPEC model from the libRadtran radiative transfer
package [6] has been used. The RTM inputs consisted of the columnar AOD, the vertical
profiles of the extinction coefficient at 532nm, along with intensive aerosol optical properties
(i.e., single scattering albedo, asymmetry parameter, and Ångström exponent) extracted
from the AERONET almucantar retrievals, after collocating ground-based and spaceborne
(CALIPSO) observations. Additional parameters such as the surface albedo, ozone, and
water vapor columnar concentrations were all extracted from the MERRA-2 reanalysis.

Region of Interest. The region of interest (ROI) consisted of North Africa, the Middle
East, and Europe (NAMEE domain). Within the geographical limits of the ROI, a variety of
aerosol species of natural and anthropogenic origins were encountered (Figure 1).

As a first step, we calculated the frequency of occurrence (expressed in percentages) of
each aerosol type categorized based on the CALIPSO classification scheme over the study
period (January 2007–December 2020). The obtained results, shown in Figure 1b, were
produced by taking into account the QA-filtered retrievals throughout troposphere and
stratosphere (up to 30 km). Among the aerosol species in the NAMEE domain, a clear
predominance of dust aerosols either when these were solely detected (~52%) or were
mixed with pollutants (~18%) and marine particles (~9%) was evident. About 10% of the
total sample corresponded to sea salt aerosols, whereas the frequencies for the remaining
aerosol species did not exceed 5%.
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Figure 1. (a) Geographical limits of the NAMEE domain and (b) frequency of occurrence for each 
aerosol subtype according to the existing CALIOP V4 classification scheme. 

As a first step, we calculated the frequency of occurrence (expressed in percentages) 
of each aerosol type categorized based on the CALIPSO classification scheme over the 
study period (January 2007–December 2020). The obtained results, shown in Figure 1b, 
were produced by taking into account the QA-filtered retrievals throughout troposphere 
and stratosphere (up to 30 km). Among the aerosol species in the NAMEE domain, a clear 
predominance of dust aerosols either when these were solely detected (~52%) or were 
mixed with pollutants (~18%) and marine particles (~9%) was evident. About 10% of the 
total sample corresponded to sea salt aerosols, whereas the frequencies for the remaining 
aerosol species did not exceed 5%.  

3. Results 
Evaluation of the CALIOP–CALIPSO retrievals. Errors in the CALIPSO product can 

largely be attributed either to the mistyping of aerosol layers or to the incorrect modelling 
of aerosol microphysics, which can result in large underestimations of the order of 13% in 
terms of AOD [3]. A significant source of uncertainty arises also from the limitation of 
CALIPSO to identify tenuous aerosol layers, whereas opaque cloud or aerosol layers sig-
nificantly attenuate or even block the transmission of the laser beam, making the detection 
of the underneath layers infeasible.  

A comparison of the CALIPSO AOD versus AERONET (Figure 2a) and MODIS-
Aqua (Figure 2b) was performed. Overall, CALIPSO tended to underestimate AOD, and 
the negative biases against AERONET increased as the intensity of aerosol loads increased 
(Figure 2a). Biases against MODIS were highly distinguishable over the Saharan desert 
and specifically over well-known dust sources (e.g., Bodélé), an inadequacy strongly re-
lated to the presence of opaque dust layers completely attenuating the laser beam. Above 
seas, the negative CALIPSO-MODIS declinations were found in downwind dust regions. 
Slightly positive and negative differences were recorded in Central and Northern Europe, 
respectively.  
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Figure 1. (a) Geographical limits of the NAMEE domain and (b) frequency of occurrence for each
aerosol subtype according to the existing CALIOP V4 classification scheme.

3. Results

Evaluation of the CALIOP–CALIPSO retrievals. Errors in the CALIPSO product can
largely be attributed either to the mistyping of aerosol layers or to the incorrect modelling
of aerosol microphysics, which can result in large underestimations of the order of 13%
in terms of AOD [3]. A significant source of uncertainty arises also from the limitation of
CALIPSO to identify tenuous aerosol layers, whereas opaque cloud or aerosol layers signif-
icantly attenuate or even block the transmission of the laser beam, making the detection of
the underneath layers infeasible.

A comparison of the CALIPSO AOD versus AERONET (Figure 2a) and MODIS-
Aqua (Figure 2b) was performed. Overall, CALIPSO tended to underestimate AOD,
and the negative biases against AERONET increased as the intensity of aerosol loads
increased (Figure 2a). Biases against MODIS were highly distinguishable over the Saha-
ran desert and specifically over well-known dust sources (e.g., Bodélé), an inadequacy
strongly related to the presence of opaque dust layers completely attenuating the laser beam.
Above seas, the negative CALIPSO-MODIS declinations were found in downwind dust
regions. Slightly positive and negative differences were recorded in Central and Northern
Europe, respectively.
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Figure 2. Comparison of CALIPSO AOD with (a) AERONET (the blue line shows the linear regression,
while the black one-to-one dashed line correspond to no AOD difference between AERONET and
CALIPSO) and (b) MODIS AOD, respectively.

Case studies. For the derivation of the extinction coefficient and the columnar AOD, a
Lidar Ratio (LR) is required (i.e., the ratio of extinction to backscatter), which is predefined
for each aerosol type classified in the CALIPSO retrieval scheme. In order to examine
the validity of the LRs used in CALIOP V4 retrievals, we focused initially on dust cases
using in-parallel LRs adapted from the DeLiAn database [7] (Figure 1b). In Figure 3, pure
dust layers that extended over El Farafra, Lampedusa, and IER Cinzana are presented.
The respective attenuated backscatter at 532 nm was averaged along the orbits, and the
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extinction coefficients are calculated with the CALIPSO default LR for dust (44 sr) (red
line) and the revised from the DeLiAn database (53 sr) (green line). For the computation of
AOD, the extinction coefficient at 532nm was integrated for both LRs, and the results were
compared with the respective AERONET AODs temporally averaged for different time
windows (±15, ±30, ±45, and ±60 min, with respect to the satellite overpass). Thanks
to the utilization of the revised dust LR, the bias against AERONET AODs was reduced
by ~20%.
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coefficient 532 nm, and the extinction coefficient 532 nm, along with the corresponding AOD.

RTM analysis. For all cases, we calculated the clear-sky shortwave direct radiative
effects (DREs) (using the input parameters from Table 1) at the top of the atmosphere
(TOA), within the atmosphere (ATM) and at the Earth’s surface (NETSRFC) based on the
following equations.

DREi = FRADON
NET,i − FRADOFF

NET,i (1), DREATM = DRETOA–DRENETSRFC (2), i = TOA, ATM, SRFC

Table 1. UVSPEC model input parameters.

Station SZA AOD
[532] SSA ASYM AE

[440–870]
TCWV

[mm/cm2]
TCO
[DU] ALBEDO

El_Farafra 36.75 0.223/0.269 * 0.94 0.72 0.15 20.46 272.96 0.30
Lampedusa 20.82 0.303/0.365 0.94 0.72 0.14 23.32 285.82 0.07

IER_Cinzana 24.66 0.550/0.663 0.94 0.72 0.12 44.39 280.61 0.15

* V4LR/revLR.

The FRADON
NET,i and FRADOFF

NET,i terms represent the radiative fluxes with and without
aerosols, respectively. According to Figure 4, dust aerosols cause a large surface cooling
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and an atmospheric heating effect. These effects are strongest (DRESURFNET down to
−84.8 W/m2 and DREATM up to 72.6 W/m2) at the station of IER Cinzana, where the AOD
takes its maximum values. Moreover, the DRENETSRFC is more pronounced in Lampedusa
compared to El Farafra, due to the presence of higher aerosol loads. However, the DREATM
takes similar values in these two stations because the surface albedo is higher compared to
Lampedusa in the case of El Farafra, resulting in an increase in the reflected solar radiation
at the ground, thus increasing the atmospheric absorption.
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The role of the underlying surface albedo was crucial for the determination of the sign
and the magnitude of the aerosol-induced DRE at TOA (planetary effect). According to our
results, dust caused a planetary cooling effect over Lambedusa and IER Cinzana (surface
albedo 0.07 and 0.15), whereas the multiple scattering between the relatively absorbing
dust particles and the underlying highly reflective surface (surface albedo 0.30) resulted in
a planetary warming effect (positive sign of the DRETOA) over El_Farafra. We also found
that the employment of the AOD computed with the revised dust LR (DeLiAn database)
in the DRE calculations led to an enhancement of the surface cooling and atmospheric
warming effects by up to ~22%. At TOA, both the planetary cooling (at IER Cinzana and
Lambedusa) and the planetary warming effect (El Farafra) become stronger (changes of the
order of ~17–27%).

4. Conclusions

In the current study, focus was given on the performance of the CALIOP–CALIPSO
retrievals in terms of representing aerosol loads in the NAMEE domain over the period
of 2007–2020. According to our results, CALIOP underestimated AOD with respect to
AERONET sunphotometers, whereas it was revealed via the intercomparison against
MODIS-Aqua that the maximum and moderate negative biases were recorded in dust
sources and dust downwind areas, respectively. Such deficiencies were expected to affect
the estimations of the induced direct radiative effects. Representative case studies for dust
layers were examined due to the predominance of this type among other aerosol species. An
adaptation of a more realistic dust LR selection scheme improves the level of agreement with
ground-based observations. Such corrections, among others, will strengthen the reliability
of the estimated aerosol direct radiative effects relying on the synergy of CALIOP–CALIPSO
aerosol retrievals and radiative transfer models. For the same case studies, dust DREs
at TOA, in the atmosphere and at the SRFC, were computed using the default CALIPSO
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dust lidar ratio (44 sr) and the corresponding value from the DeLiAn database (53 sr). As
expected, a stronger surface cooling and an atmospheric warming was found (by up to
~22%), whereas the increase in the DRETOA magnitude in absolute terms varied from 17%
to 27%. For a next step, the analysis will be implemented for different aerosol scenes and
the simulated radiation fields at TOA, and the surface will be evaluated against satellite
(CERES) and ground-based (BSRN and GEBA) observations, respectively.
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