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Abstract: Particulate matter (PM) is one of the major air pollutants that has adverse impacts on
human health. The aim of this study is to present an alternative approach for retrieving fine PM
(particles with an aerodynamic diameter less than 2.5 µm, PM2.5) using artificial intelligence. Ground-
based instruments, including a hand-held Microtops II sun photometer (for aerosol optical depth), a
PurpleAir sensor (for PM2.5), and Rotronic sensors (for temperature and relative humidity), are used
for the machine learning algorithm training. The retrieved PM2.5 reveals an adequate performance
with an error of 0.08 µg m−3 and a Pearson correlation coefficient of 0.84.

Keywords: particular matter; aerosol optical depth; artificial intelligence; machine learning;
PM2.5 retrieval

1. Introduction

Particulate matter (PM)-related air pollution is a major environmental risk affecting
human health and the environment [1]. Thus, precise knowledge of PM mass concentration
spatiotemporal distribution is vital to quantitatively assessing its impact on the environment
and investigating the health risks for the public [2]. Current conventional reference grade
instruments face several limitations, mainly due to their increased installation and operation
costs. Therefore, regulatory monitoring sites’ density is impeded, and they are unable
to capture the small-scale variations of PM concentrations across complex environments.
Recent advance in electronics facilitates the assessment of PM monitoring techniques
using low-cost and portable sensing modules. Low-cost sensor technologies constitute a
promising tool to supplement and enhance the spatiotemporal resolution of existing PM
monitoring networks.

During the last two decades, new alternative techniques for retrieving the spatiotem-
poral distribution of PM2.5, have rapidly increased, using the relationship between satellite-
based AOD and PM2.5 in conjunction with advanced mathematical methods [3]. Some of
the most frequently implemented methods are multiple linear regression models [4] and
machine learning (ML) algorithms such as artificial neural networks [5], support vector
machines [6], and random forest [7,8]. The accuracy of PM2.5 estimations is related to
the uncertainties that are induced by satellite AOD products. In addition, since AOD
measurements from satellites are available 1–2 times per day, PM2.5 retrievals are provided
solely on a daily basis.

In this work, an alternative machine learning methodology for retrieving PM2.5 is
proposed, taking into account for the first time the importance of applying the AOD to
various spectral channels along with several meteorological variables using quality-assured
data from ground-based instruments.
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2. Data

The data used in this study were collected at the Laboratory of Atmospheric Physics at
the University of Patras (38.291◦ N, 21.789◦ E) and were divided into three main categories.
The first category includes aerosol optical properties such as aerosol optical depth (AOD)
at four spectral channels (e.g., 440, 500, 675, and 870 nm) as collected from a hand-held
Microtops II (MII) sun photometer. MII retrieves columnar AOD using the Bouguer-
Lambert-Beer law [9]. All the MII measurements were acquired under cloud-free conditions
at a 30 min resolution.

The second category includes calibrated PM2.5 measurements from a PurpleAir-II
low-cost particle concentration sensor (PAir). PAir monitors integrate a set of PMS 5003 sen-
sors (Plantower Co., Ltd., Beijing, China) and conduct simultaneous PM concentration
measurements at approximately 2 min temporal resolution. PMS sensors’ operation is
based on particle light scattering principles and reports the size distribution of particles,
with a diameter ranging between 0.3 and 10 µm, and the mass concentration of PM1,
PM2.5, and PM10. They are equipped with a built-in fan that draws ambient air (flow rate:
0.1 L min−1), and a laser at 680 nm wavelength that is used as the light source. Particles
pass through the laser beam and the scattered light is collected by a photodetector; a propri-
etary algorithm is used to determine PM mass concentrations based on the output signal.
PAir sensors’ sensitivity and reliability have been widely investigated during the last few
years, exhibiting good performance and long-term performance stability [10–12]. Low-cost
sensors, however, require site-specific calibration to assure good data quality [13,14]. In this
work, PAir PM2.5 values were corrected by implementing a calibration method proposed
by [15] that is appropriate for the examined area.

The third data category contains meteorological data, ambient temperature (T), and
relative humidity (RH) obtained from Rotronic sensors (MP101A-T7-W4W) at the automatic
weather station located at the University campus in Patras, Greece. Within the study period,
1767 measurements were acquired, spanning from 04/2021 to 10/2022. The meteorological
and PM2.5 data were temporally aggregated within the time window of 2 min (±1 min)
centered over the MII timestamp.

3. Methodology

The PM2.5 is retrieved based on the following parameters: (1) AOD at four spectral
channels (440, 500, 670, and 870 nm), (2) T, and (3) RH. AOD is an adequate variable in
terms of capturing the intra-day variations of PM2.5 mass concentrations since aerosol
emissions, dynamical transport, etc., will affect both parameters. The whole dataset, which
consists of the previous parameters, has initially been separated into two datasets: the
train and the test, which include 70% and 30% of the whole dataset, respectively. For the
sake of this study, an ensemble technique, the random forest (RF), is adapted. RF presents
a very effective supervised machine learning algorithm that can produce very accurate
predictions in large datasets, either for classification or regression tasks. In this study, the
RF is used for regression. Thus, the train dataset is applied to train the RF algorithm.

In order to achieve optimal accuracy, a randomized search procedure was performed
during the training in order to find the best combination of hyperparameters, including a
10-fold cross-validation process using the mean square error as a loss function. After the
training of the RF algorithm, the RF scheme with the highest performance, including the
best combination of hyperparameters, is implemented to evaluate the test dataset.

4. Results
4.1. Descriptive Statistics

Based on Table 1, the minimum and maximum values of PM2.5 ranged from 0.37 to
18.76 µg m−3, with a mean of 4.72 µg m−3, highlighting the modest level of pollution across
the study station. During the same period, the mean AOD values ranged between 0.11
and 0.21. The city of Patras, located in southern Europe, is frequently affected by dust
particles transported from the Sahara Desert, recording high levels of AOD (maximum
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values 0.93–1.10). Nevertheless, fine particles are dominant across the area revealing a
mean AE440−870nm (Ångström Exponent between 440 and 870 nm) of 1.41. The AE440−870nm
from MII is computed using the Ångström power formula from the corresponding AOD
channels. T and RH values ranged between 4.40–39.70 ◦C and 11.80–89.80% with average
values of 24.26 ◦C and 45.36%, respectively.

Table 1. Minimum, maximum, and average values of ML algorithm input parameters.

Variables Minimum Maximum Mean

PM2.5 (µgm−3) 0.37 18.76 4.72
AOD440nm 0.031 1.10 0.25
AOD500nm 0.027 1.02 0.21
AOD675nm 0.021 0.97 0.15
AOD870nm 0.013 0.93 0.11

AE440−870nm 0.15 2.21 1.41
T (◦C) 4.40 39.70 24.26

RH 11.80 89.80 45.36

4.2. Machine Learning Algorithm Performance

In order to investigate the different effects of spectral AOD and meteorological vari-
ables on model retrieval performance, a sensitivity analysis of the input parameters was
performed during the training of the RF algorithm. In total, 15 different cases were applied,
with the aerosol optical properties as a baseline (Table 2). The first scenario (Scenario 1)
consisted of five different sub-scenarios. Scenario 1.1 included solely the AOD440nm as an
input parameter for the RF algorithm training, whereas for scenario 1.2 the AOD500nm was
included, and so on for the rest of the sub-scenarios. Thus, scenario 1.5 included the AOD
at four MII spectral channels and AE440–870nm. The cases in Scenarios 2 and 3 are similar to
Scenario 1 but included T and RH, respectively, as input parameters.

Table 2. Scenarios applied during the RF algorithm training procedure.

Scenario 1: Only aerosol optical properties
1.1 1.2 1.3 1.4 1.5

AOD440nm AOD440 and 500 nm AOD440, 500, and 675 nm AOD440, 500, 675 and 870 nm
AOD440, 500, 675, and 870 nm

and AE440–870nm
Scenario 2: Aerosol optical properties and ambient temperature

2.1 2.2 2.3 2.4 2.5
1.1 and T 1.2 and T 1.3 and T 1.4 and T 1.5 and T

Scenario 3: Aerosol optical properties, ambient temperature and relative humidity
3.1 3.2 3.3 3.4 3.5

1.1, T and RH 1.2, T and RH 1.3, T and RH 1.4, T and RH 1.5, T and RH

Figure 1 illustrates the findings of the sensitivity analysis for the 15 different training
scenarios. In the literature, the majority of the studies dedicated to PM2.5 retrieval via ML
use satellite based AOD at a specific channel. In this study, firstly the effect of spectral AOD
information on ML algorithm performance (Scenario 1) is investigated, and it is apparent
that the performance of the ML algorithm increases as more spectral channels of AOD are
included. In particular, the MAE (RMSE) values range from 1.76 µg m−3 (2.25 µg m−3)
to 1.10 µg m−3 (1.53 µg m−3). In terms of correlation coefficient (R), the ML algorithm
performance increased substantially by including all four spectral channels of AOD (from
0.45 to 0.78). The effect of AE440–870nm was marginal for all scenarios. In total, including all
spectral AOD channels, the Mean Absolute Error (MAE) (Root Mean Square Error (RMSE))
was suppressed by ~38% (~32) compared to when using only AOD440nm.

Secondly, the effect of two meteorological parameters on ML performance was in-
vestigated together with AOD (Table 1). By including T (Scenario 2) in ML training,
an increase in the model’s performance was revealed, reducing the MAE (RMSE) from
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1.46 µg m−3 (1.90 µg m−3) to 0.97 µ gm−3 (1.38 µg m−3). In addition, R improved from
0.62 to 0.82. For scenario 3, RH was also included on ML training in addition to AOD
and T, leading to a further improvement of the model’s performance from 1.31 µgm−3

(1.72 µg m−3) to 0.91 µg m−3 (1.30 µg m−3) for MAE and RMSE, respectively, and from 0.70
to 0.84 for R. Including the two meteorological parameters, MAE (RMSE) was decreased by
~20% (~15%), compared to using the parameters of scenario 1.5. Figure 2a shows the linear
relationship between the ML-based (estimations) and ground-based (measurements) PM2.5
for the scenario with the highest accuracy (Scenario 3.5). The findings revealed a dispersion
of 26.9%.
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Figure 2. (a) Linear relationship and (b) frequency distribution of differences between the ML-based
(estimations) and ground-based (measurements) PM2.5 for scenario 3.5 (see Table 2).

Figure 2b depicts the frequency distribution of differences between the ML-based
(estimations) and ground-based (measurements) PM2.5 for the scenario with the highest
accuracy (Scenario 3.5). For the 69% (89%) of the test dataset, the differences between the
PM2.5 estimations and measurements were lower than 1 µg m−3 (2 µg m−3).

5. Conclusions

Quantitative and qualitative information on surface PM2.5 mass concentration is vital
for monitoring and regulating air quality. In this work, an alternative ML-based method-
ology relying on the synergy of ground-based AOD and meteorological measurements
is proposed for retrieving PM2.5. The most interesting finding of this study is the great
improvement in ML algorithm’s performance by including AOD spectral information.
Moreover, the addition of two meteorological parameters, T and RH, increased the retrieval
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performance of the ML algorithm. The results of the proposed methodology, due to their
high temporal resolution, could be used to fill and extend either existing or missing PM2.5
time series derived from ground-based measurements. In addition, the retrieved PM2.5
can be used as a reference measurement for the validation of retrieval algorithms based on
satellite measurements.
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