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Abstract: Quality-assured aerosol optical properties (AOP) with high spatiotemporal resolution
are vital for the accurate estimation of direct aerosol radiative forcing and solar irradiance under
clear skies. In this study, the sky information from an all-sky imager (ASI) is used with machine
learning (ML) synergy to estimate aerosol optical depth (AOD) and the Ångström Exponent (AE).
The retrieved AODs (AE) revealed good accuracy, with a dispersion error lower than 0.07 (0.15).
The retrieved ML AOPs are used to estimate the DNI by applying radiative transfer modeling. The
estimated ML DNI calculations revealed adequate accuracy to reproduce reference measurements
with relatively low uncertainties.

Keywords: all-sky imager; aerosol optical properties; machine learning; aerosol retrieval; AERONET;
DNI estimations

1. Introduction

Aerosol particles constitute the highest source of uncertainty in direct aerosol radia-
tive forcing and solar irradiance estimations under cloud-free conditions [1]. So, accurate
aerosol optical and microphysical properties are vital to alleviating the uncertainties in solar
resource and climate change studies. Currently, several monitoring techniques are available
for AOP retrieval, based on satellite and ground-based measurements. The most widely
used ground-based network is AERONET (AERosol RObotic NETwork). AERONET deliv-
ers AOP at the highest temporal resolution (5–15 min), using several inversion algorithms
and CIMEL sun-photometers [2–4]. From space, several passive sensors aboard satellites
are available, such as MODIS (MODerate resolution Imaging Spectroradiometer) [5–7] and
MISR (Multi-angle Imaging SpectroRadiometer) [8]. Despite the great performance of those
aerosol remote sensing data sets, there are still some limitations.

Although ground-based measurements are optimal in terms of accuracy, a limitation
is that their global coverage is sparse. On the other hand, satellite-based AOP retrievals
provide approximate global coverage; a limitation is that their temporal variability is up
to two measurements per day. For this reason, several alternative techniques for AOP
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retrieval have emerged in the last few years to fill the gap and extend the availability of
accurate AOP. In this study, a supervised ML algorithm is applied to retrieve AOPs such as
the spectral AOD and AE by using the sky information captured from an all-sky imager
(ASI) and the aerosol information from AERONET. In addition, the potentiality of using
the ML retrieved AOPs to estimate the direct normal irradiance (DNI) is presented using
radiative transfer modeling, analyzing their levels of uncertainty.

2. Data

The data applied in this work were acquired from an ASI and a CIMEL sun-photometer
installed at the National Observatory of Athens (NOA) in Thissio, Greece. The CE318
sun–sky photometer installed in the station is the standard instrument of AERONET. For
the sake of this study, Level 2.0 data from the latest AERONET Version 3 were used,
including pre-field and post-field calibrations [3], providing quality-assured data that
are optimal for the application of the proposed methodology. Moreover, the used ASI
is a commercial Mobotix Q24M model, which captures images from the entire upper
hemisphere every 640 µs and stores them in 24-bit JPEG format with a spatial resolution of
1024 × 768 pixels. In particular, the sensor has a red–green–blue (RGB) filter. So, images on
those three spectral channels (440, 500, and 675 nm) were used, including color intensities
ranging from 0 to 255.

The AERONET measurements were temporally synchronized with the closest ASI
image, spanning a time frame between 1 January 2021 and 18 November 2021. All the
images are examined to be under cloud-free conditions by visual inspection. In addition,
measurements with a solar zenith angle (SZA) greater than 70◦ are eliminated from the
analysis to prevent cases with the sun at the edges of the image, where many obstacles
interfere. In total, 3212 images were retained to apply the proposed methodology.

3. Methodology

In this study, a machine learning algorithm, the Light Gradient Boosting Machine
(LGBM) [9], is applied to retrieve AOD and AE. The data used as input parameters to the
ML algorithm are the following: (1) RGB information from the ASI, (2) SZA, and (3) total
column water vapor (TCWM). TCWV data were obtained through the CAMS (Copernicus
Atmosphere Monitoring Service) reanalysis product [10]. The RGB ASI information are
extracted from the following two different aspects: Firstly, 60 pixels were selected from the
RGB images outside the sun saturated area including (1) 30 pixels with a 2◦ step across the
principle plane and (2) 30 pixels with a 2◦ step across almucantar. Secondly, the saturation
area (SAT in %) is applied, which is defined as the ratio between the number of pixels
around the sun that includes sunlight and the total number of image pixels. SAT is related
to Mie theory [11], providing valuable information for ML algorithm training.

The dataset has initially been separated into two datasets, i.e., the train and the test,
which include 70% and 30% of the whole dataset, respectively. In total, four LGBM models
are trained, three for retrieving the spectral AOD, and one for AE. For the AOD440nm,
AOD500nm, and AOD675nm ML models, the corresponding images for the blue, green, and
red channels are used, while for the AE, all RGB values are applied. All four models
included the SZA and TCWV. Before the training process, all input parameters are normal-
ized to include values solely between 0 and 1. In particular, the Min–Max normalization
process is applied to all parameters except SZA, where the cosine function is used. To
achieve optimal accuracy, a randomized search procedure was performed during the LGBM
algorithm training to find the best combination of hyperparameters, including a 10-fold
cross-validation process using the mean square error as a loss function. After the training
of the LGBM algorithm, the LGBM scheme with the highest performance, including the
best combination of hyperparameters, is implemented to evaluate the test dataset.



Environ. Sci. Proc. 2023, 4, 133 3 of 6

4. Results
4.1. Aerosol Optical Properties Retrieval Performance

In the first section of the results, the ML model’s AOP retrieval performance is investi-
gated. Figure 1 depicts the ML model’s performance against the reference measurements
(AERONET). In general, AOD values range between 0.02 and 1.2. Athens, Greece, is
frequently affected by dust events from the Sahara Desert, leading to quite high aerosol
burden levels (>0.8). For AODs, the MBE (RMSE) values range between −0.71 and 0.033%
(23.1 and 33.9%) (Table 1). Regarding AE440–675nm, rMBE (rRMSE) equals 1.4% (12.0%)
(Table 1).
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Figure 1. Linear relationship of ML retrieved (a) AOD440nm, (b) AOD440nm, (c) AOD675nm, and
(d) AE440–675nm as a function of AERONET.

Table 1. Mean Bias Error (MBE), Root Mean Square Errors (RMSE) and coefficient of determination
(R2) for AOD440nm, AOD440nm, AOD675nm, and AE440–675nm. In the parenthesis are presented the
relative MBE and RMSE.

Variable MBE (rMBE) RMSE (rRMSE) R2

AOD440nm −0.0012 (−0.51%) 0.056 (23.1%) 0.86
AOD500nm 0.000069 (0.033%) 0.066 (32.4%) 0.79
AOD675nm −0.0011 (−0.71%) 0.053 (33.9%) 0.85

AE440–675nm 0.017 (1.4%) 0.15 (12.0%) 0.85

The coefficient of determination (R2) ranged between 0.79 and 0.86 for AODs and
equaled 0.85 for AE440–675nm, revealing an adequately good linear relationship between the
ML-based AOPs from ASI and AERONET (Table 1).

4.2. DNI Estimations and Uncertainties

In the second section of the results, the DNI is calculated using the libRadtran software
package and the UVSPEC radiative transfer code [12,13]. In the libRadtran simulations,
the radiative transfer equation is numerically solved using the SDISORT radiative transfer
solver, which includes a pseudospherical approximation [14]. The libRadtran simulations
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were calculated using a band parameterization based on an optimized version of the
correlated-k approximation [15], KATO2. Regarding aerosol, the default background
aerosol model of Shettle (1989) [16] is used, considering constant climatological values of
AERONET single scattering albedo, asymmetry parameter, and ozone across the study
station, while the AE and AOD are applied from AERONET measurements and ML
retrievals. The DNI estimations using the retrieved ML and AERONET AOPs are hereafter
abbreviated as “DNI ML” and “DNI AERONET,”, respectively.

Figure 2a illustrates the linear relationship between the ML and AERONET DNI. An
R2 of 0.90 is found, revealing an adequately good linear relationship. The MBE statistic
revealed a modest bias (0.54 W m−2), indicating a small overestimation of the ML DNI
compared to AERONET. The highest discrepancies between ML and AERONET DNI are
observed for high AOD cases (Figure 2a), providing a relatively high DNI overestimation
due to a relatively high underestimation of AOD values.
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Figure 2. (a) Linear relationship between the retrieved and AERONET DNI. The
color bar presents the AERONET AOD at 500 nm. (b) Linear relationship be-
tween DNI discrepancies (∆DNI = DNIAERONET − DNIML) and AOD500nm discrepancies
(∆AOD = AODAERONET − AODML). The color bar presents the AE440–675nm discrepancies
(∆AE440−675nm = AE440−675nm;AERONET − AE440−675nm;ML).

Figure 2b depicts the linear relationship between the discrepancies of DNI
(∆DNI = DNIAERONET − DNIML) and AOD500nm (∆AOD = AODAERONET − AODML).
Figure 2b depicts the differences between AERONET and ML, AOD, and AE and the
resulting differences in DNI when using the simulated AOPs instead of AERONET. It is
apparent that the AOD retrieval performance regulates the ∆DNI. In particular, ML AOD
underestimation (∆AOD > 0) or overestimation (∆AOD < 0) reflects negative or positive
∆DNI up to 300 and 150 W m−2, respectively. Regarding AE, a negative ∆AE440−675nm
leads to a more negative ∆DNI, and vice versa.

5. Conclusions

In this study, an ML-based approach is evaluated to simulate AOPs using the sky
information captured from an ASI. Auxiliary parameters were also used, such as the
water vapor column and solar geometry. Considering the adequate ML AOP simulation
performance, the potential use of them for DNI estimations was investigated. ML DNI
estimations revealed quite good results with a Pearson correlation coefficient of 0.95 and
biases around 0.54 W m−2, presenting the applicability of ML AOPs for solar resource
estimation with small uncertainties.
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