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Abstract: Poor air quality remains the largest environmental health risk in Europe, despite the
EU policy efforts. Especially in cities, the synergistic interactions between the urban heat island
and urban pollution result in premature mortality, associated with cardiovascular and respiratory
diseases. Mediterranean urban areas are particularly susceptible under the consideration that the
intensity, frequency, and duration of heat waves will increase due to climate change. The LIFE
SIRIUS project designates that air quality management needs to go beyond traditional approaches
in order to consider synergistic effects. This paper assesses the impact of temperature on daily
mortality from 2004 to 2019 in the Republic of Cyprus with the use of a Generalized Additive Model
(GAM). The association between mean daily temperature and mortality is nonlinear, implying that a
prompt rise in deaths occurs when temperatures are high, while for colder temperatures, the effect
is delayed. We report an inverted J-shaped relationship between mean temperature and mortality,
with the most prominent effects on human health documented at low temperatures. The population
under study appears to be acclimatized to local conditions, as mortality increases after 10 days of
exposure to the environmental risk. The results of this study will assist in the definition of city-specific
thresholds above which health warnings for the protection of the local population will be issued, in
the framework of LIFE SIRIUS.

Keywords: air quality; thermal discomfort; urban heat island; human health; climate change

Environ. Sci. Proc. 2023, 26, 117. https://doi.org/10.3390/environsciproc2023026117 https://www.mdpi.com/journal/environsciproc

https://doi.org/10.3390/environsciproc2023026117
https://doi.org/10.3390/environsciproc2023026117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/environsciproc
https://www.mdpi.com
https://orcid.org/0000-0002-5073-1894
https://orcid.org/0000-0001-7871-1839
https://orcid.org/0000-0001-9757-4462
https://orcid.org/0000-0002-8480-5388
https://orcid.org/0000-0001-6340-748X
https://orcid.org/0000-0001-5178-2522
https://orcid.org/0000-0001-9050-3880
https://orcid.org/0000-0001-8637-0974
https://orcid.org/0000-0003-4110-241X
https://doi.org/10.3390/environsciproc2023026117
https://www.mdpi.com/journal/environsciproc
https://www.mdpi.com/article/10.3390/environsciproc2023026117?type=check_update&version=1


Environ. Sci. Proc. 2023, 26, 117 2 of 6

1. Introduction

The problem of poor air quality is becoming increasingly urgent, with cities around
the world experiencing more frequent and severe episodes of high pollution levels [1],
while the number of associated deaths is constantly increasing [2]. The detrimental effects
of air pollution on human health are established, and there is a substantial body of evidence
linking exposure to air pollution to increasing mortality especially from cardiovascular
and respiratory causes [3–5], exacerbated chronic diseases [6], elevated mortality risk
concerning frail inhabitants [7], and additional years of life lost [8].

Urban areas are particularly sensitive, because of the synergistic interactions between
urban heat islands (UHIs) and urban pollution islands (UPIs). The UPI has been recently
coined to describe the spatial and temporal variations in pollution concentrations that exist
not only between urban and rural areas, but also within cities themselves [9]. This new
term draws an analogy to UHI, which traditionally denotes the additional warmth in cities
compared to their non-urbanized surroundings, as well as the thermal differences within
urban areas [10]. The synergies between UHIs and UPIs become even more important
when considering the increasing frequency, intensity, and duration of heat waves due to
climate change [11]. Thus, air quality management in urban areas needs to go beyond the
traditional approaches in order to consider the compound effects of UPIs, UHI, and heat
waves.

Despite the implementation of EU policies for mitigating air pollution, numerous
regions continue to exceed the recommended guidelines outlined in the European Council
Directive 2008/50/EC. For instance, Thessaloniki, Greece, reported numerous exceedances
in EU daily limits of PM10 for 2019 [12]. In the same year, Nicosia, Cyprus, documented
violations not only for PM10, but for O3 thresholds as well [13], and Rome, Italy, surpassed
the 2019 annual NO2 average [14]. The inability of national authorities to adhere to the
PM10 and NO2 limits established by the EU in Thessaloniki and Rome, respectively, has resulted
in the initiation of infringement proceedings by the European Commission against Italy (Case
C-573/19 (https://curia.europa.eu/juris/document/document.jsf?text=&docid=217525
&pageIndex=0&doclang=EN&mode=req&dir=&occ=first&part=1&cid=26708984 (accessed
on 23 May 2023))) and in the recent conviction of Greece (Case C-70/21 (https://curia.europa.eu/
juris/document/document.jsf?text=&docid=271781&pageIndex=0&doclang=EL&mode=
req&dir=&occ=first&part=1&cid=5755193) (accessed on 23 May 2023)).

As a result, the European Court of Auditors proclaimed that EU countries are not
protecting public health effectively, partly due to the inadequate performance of Air Quality
Plans (AQPs) in ensuring compliance with European air quality standards [15].

In light of this, the project LIFE SIRIUS aims to enhance air quality planning in three
EU urban metropolitan areas (Thessaloniki in Greece, Rome in Italy, and Nicosia in Cyprus)
in order to

1. Assess and improve the cities’ air quality plans, considering current (2019) and future
(2030) climate conditions;

2. Identify UHI and UPI hotspots and forthcoming HWs, where short-term mitigation
measures should be prioritized;

3. Provide health-related warnings considering the differential heat and air pollutants’
effects through the examination of the air-pollution–mortality association at different
temperature strata.

To set the scientific basis for the health-related warning systems of Nicosia, the as-
sessment of premature mortality from short-term exposure to heat stress is realized. The
present epidemiological study quantifies the impact of mean temperature on the human
health of the population of Cyprus, and, secondly, it defines city-specific thresholds for
issuing warnings for the protection of the population.

https://curia.europa.eu/juris/document/document.jsf?text=&docid=217525&pageIndex=0&doclang=EN&mode=req&dir=&occ=first&part=1&cid=26708984
https://curia.europa.eu/juris/document/document.jsf?text=&docid=217525&pageIndex=0&doclang=EN&mode=req&dir=&occ=first&part=1&cid=26708984
https://curia.europa.eu/juris/document/document.jsf?text=&docid=271781&pageIndex=0&doclang=EL&mode=req&dir=&occ=first&part=1&cid=5755193
https://curia.europa.eu/juris/document/document.jsf?text=&docid=271781&pageIndex=0&doclang=EL&mode=req&dir=&occ=first&part=1&cid=5755193
https://curia.europa.eu/juris/document/document.jsf?text=&docid=271781&pageIndex=0&doclang=EL&mode=req&dir=&occ=first&part=1&cid=5755193
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2. Materials and Methods
2.1. Study Area

This study focused on Cyprus, an island in the Eastern Mediterranean. Its climate
is typical of the region, characterized by dry and warm summers (June–September) and
variably “wet” winters (November–March). Autumn and spring are generally short-lived
and transitions are sharp. During hot months, the temperature often reaches 36 ◦C. The
specific study area (for which health data are available) is the area controlled by the Republic
of Cyprus, an area inhabited by a population of about 1 million.

2.2. Data Analysis

We applied a distributed-lag non-linear model using the framework of Generalized
Additive Models or GAMs ([16], ch. 7) in order to estimate the health impact of thermal
stress by demonstrating temperature-related mortality effects in Cyprus.

The dataset, including the daily number of deaths and mean daily temperature
(Tmean) between 2004 and 2019, was acquired from the Ministry of Health of the Republic
of Cyprus. Specifically, the data comprise deaths from cardiovascular and respiratory
causes (ICD10 codes I00–I99 and J00–J99). All post-processing analysis of model data was
conducted via the mgcv package [17] within the statistical environment R [18].

3. Results and Discussion

Figure 1 displays the bi-dimensional exposure–lag-response surface of the estimated
Relative Risk (RR) in a three-dimensional diagram for mean temperature and lag values.
The risk values are relative to the overall (sample) mean mortality count during the period.
The association between Tmean and mortality RR suggests an immediate increase in
mortality for exposure to elevated temperatures, whereas for low ones, the effect is delayed,
in agreement with the literature [19,20]. The impact on health is most prominent at very
high values of the exposure variable at days 0–1, corresponding to an estimated increase
in mortality of about 11%. The secondary peak of RR at low temperatures (5% mortality
increase) indicates that the local population is vulnerable not only to heat but to cold as
well.
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Figure 1. Exposure-lag-response risk surface demonstrating the nonlinear association between mean
temperature and mortality.

To better understand this complex association, we extracted two-dimensional relation-
ships: Figure 2 shows the overall cumulative exposure–response curve interpreted as the
mean number of daily deaths cumulated over the entire lag period of 20 days, and Figure 3
illustrates the non-linear effects of Tmean on the mean number of daily deaths for each lag.
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Figure 3. Non-linear effects of Tmean on daily mortality at lag 0–20.

The exposure–response curve (Figure 2) is inversely J-shaped with the largest increase
in mortality occurring at cold temperatures. The lowest point of the curve (25 ◦C) corre-
sponds to the optimum temperature for the local population. In general, U, J, or V-shaped
relationships between temperature and mortality have been identified in many previous
studies (e.g., [21]), while the exact shape of the curve varies by geographic location, climatic,
and demographic characteristics [22].

The estimated lag–response relationship (Figure 3) denotes the acclimatization of the
Cyprus population to meteorological conditions of the region as mortality risk starts from
the lowest point at day 0 and peaks 10 days later. The subsequent decrease (days 10–15)
before the second peak (day 18) may be attributed to mortality displacement, which
describes a negative risk in mortality followed by an event of extreme temperatures [23].

4. Conclusions

This study analyzes the impact of mean daily temperature on all-cause mortality of
the population of Cyprus over a lag period of 20 days. Our findings indicate a rapid rise
in mortality risk due to exposure to high temperatures, whereas for lower temperatures,
the impact persists longer. Although local citizens appear to be acclimatized, the majority
of deaths occur under cold conditions. The present results highlight the importance
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of implementing location-specific protection measures and offer significant insights for
national and regional authorities to create effective health and air quality strategies.
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