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Abstract: The Pacific Ocean witnesses frequent cyclonic activity. The destructive impact of these
storms, including strong winds, heavy rain, and storm surge, causes flooding, landslides, and
extensive damage. Understanding cyclone genesis and evolution is crucial for accurate forecasts and
minimizing harm. Towards this direction, an alternative ensemble forecasting approach based on a
stochastic parameter perturbation (SPP) scheme, applied in potential vorticity (PV) anomalies, was
developed. Testing it on Typhoon Usagi demonstrated its effectiveness in introducing uncertainties to
storm tracks and cyclone development. These findings highlight the potential of stochastic methods
in regional forecasting systems.
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1. Introduction

Super Typhoon Usagi was a very intense cyclone (equivalent to a category 4 hurricane
on the Saffir–Simpson hurricane wind scale) developed in the Western Pacific Ocean
on 16 September 2013. Its development was influenced by a combination of favorable
atmospheric conditions, including warm sea surface temperatures and low vertical wind
shear [1]. The cyclone exhibited a well-defined eye at its center, surrounded by concentric
bands of intense thunderstorms. Analysis of satellite imagery and meteorological data
revealed that Cyclone Usagi underwent rapid intensification, with the minimum sea level
pressure reaching 910 hPa [2]. This powerful tropical cyclone exhibited characteristics of a
mature system, featuring sustained wind speeds of up 205 km/h (according to the Japan
Meteorological Agency—JMA).

Cyclone Usagi had significant impacts on several countries in its path, primarily af-
fecting the coastal regions of the Philippines, Taiwan, and southern China. It triggered
extensive flooding, landslides, and infrastructure damage, leading to 39 deaths and sig-
nificant economic losses estimated at approximately USD 4.32 billion [3,4]. These impacts
underscore the importance of preparedness measures, early warning systems, and re-
silient infrastructure in vulnerable coastal regions to mitigate the devastating effects of
tropical cyclones.

In this way, ensemble forecasts are employed in order to quantify the uncertainties
in cyclone paths, dynamics and impacts. The present study is an effort to propose an
alternative way of producing model ensembles based on stochastic parameter perturbations
(SPP) on potential vorticity anomalies through the identification of weather features as
coherent objects.
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2. Model Set-Up

The numerical simulations presented in this study are performed using the Advanced
Weather Research and Forecasting Model (WRF-ARW, version 4.2.2, [5]). The domain is set
up with horizontal grid resolution of 4 km and a hybrid 61 terrain-following η levels up to
50 hPa. Initial and boundary conditions were obtained from hourly ERA5 reanalysis [6] at
0.25◦ grid spacing.

The specific physical parameterization schemes common to all the simulations per-
formed in this study are summarized in the following table (Table 1):

Table 1. WRF parameterizations used for the study.

Microphysics the single-moment Thompson microphysics scheme [7,8]

Cumulus Parameterization Kain–Fritsch [9]

Short- and long-wave
radiation physics RRTMG scheme [10]

Planet boundary layer non-local K Yonsei University scheme [11,12]

3. A Feature-Based Stochastic Scheme (FBS)

The future-based stochastic system (FBS) aims to perturb stochastically the grid points
that dynamically describe a cyclone system. This is carried out via a four-step procedure:

Step one—PV budget calculation: A module has been developed that calculates the
non-conserved PV components of the total atmospheric PV at the beginning of every model
time step. This module is described in detail in [13] where it has been used to analyse the
processes that contribute to the intensification of Mediterranean cyclones.

Step two—Identifying and tracking objects: A new module has been developed
and implemented into WRF to identify coherent 3D objects. Each object is composed of
neighboring grid points of PVdiab or PVmo that exceed the absolute value of 0.75 PVUs.
However, we retrain only objects that include at least one grid point of more than 2 PVUs.
From the perspective of PV invertibility, these two absolute value thresholds are deemed
adequate for retaining objects which describe meso-scale systems in terms of size, and have
a significant impact on the atmospheric state. Since this study focuses on cyclones, we
included an additional criterion that demands from objects to be composed of grid points
with negative pressure perturbation (P’, expressed in pressure anomalies from model level
averages) (Figure 1).
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Step three—tracking objects in time: Once identified each object is separately labeled
according to the time step it was identified. If there are overlapping objects, then the oldest
time label is assigned to the object.

Step four—assigning a perturbation coefficient: Finally, every object is assigned to a
coefficient ct that changes in time according to the following equation:

ct =

(
1 − dt

τ

)
ct−1 + 0.5χ

√
1 −

(
1 − dt

τ

)2
(1)

If ct < −1, then ct = −2 − ct, if ct ≥ 1, then ct = 2 − ct. χ is a random number that
ranges from −1 to 1, t is the time step, dt is the model time step and τ is a constant in
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units of time. The choice of τ is arbitrary but nevertheless it is crucial for the frequency of
changes of the perturbation coefficient. As an example, Figure 2 shows examples of the
time evolution of the perturbation coefficient ct at every model time step for τ = 12 h.
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4. Results

In terms of the trajectory of Usagi, we can observe that the control simulation shows a
similar track compared with the ones obtained from the JMA, specially during the initiation
and mature stage of Usagi (Figure 3). Although the control trajectory starts to diverge in the
dissipation phase of Usagi, we can certainly conclude that the control simulation performs
with accuracy enough the typhoon trajectory.
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To assess the model’s sensitivity in cyclone forecasting, six simulations were conducted
using the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme within the
WRF model, while maintaining the same model configuration. The ensemble cyclone tracks
exhibited a close resemblance to the reference track (Figure 4), indicating a comparable
spread. Similarly, the development of the cyclonic system, as reflected in the Mean Sea
Level Pressure (MSLP) values at its center, varied around those of the control simulation.
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Before implementing the perturbation coefficient on the physical tendencies of the
objects, a set of experiments was performed by multiplying them with constant values.
These values ranged from 0 to 2, with an increment of 0.25. This allowed for a deeper
understanding of the impacts this procedure had on the system’s evolution. The findings
revealed that coefficients smaller than 1 (where 1 represents the control simulation) had a
more pronounced effect compared to larger coefficients (Figure 5).
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objects are multiplied with values ranging from 0 to 2 (0% to 200%).

For the purposes of this study, the FSB scheme utilized random coefficients within the
range of −0.1 to +0.4. The application of this scheme yielded a satisfactory spread, albeit
narrower than that observed with the traditional SPPT methodology. The cyclone exhibited
sensitivity throughout all stages, with the minimum mean sea level pressure (MSLP) value
consistently higher than the control case in most instances (Figure 6).
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