
Citation: Liosis, C.; Sofiadis, G.;

Karvelas, E.; Karakasidis, T.; Sarris, I.

Simulations of Tesla Valve Micromixer

for Water Purification with Fe3O4

Nanoparticles. Environ. Sci. Proc.

2022, 21, 82. https://doi.org/

10.3390/environsciproc2022021082

Academic Editors:

Vasilis Kanakoudis, Maurizio Giugni,

Evangelos Keramaris and

Francesco De Paola

Published: 7 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Simulations of Tesla Valve Micromixer for Water Purification
with Fe3O4 Nanoparticles †

Christos Liosis 1 , George Sofiadis 2 , Evangelos Karvelas 3 , Theodoros Karakasidis 3,* and Ioannis Sarris 4

1 Department of Civil Engineering, University of Thessaly, 38334 Volos, Greece
2 Department of Mechanical Engineering, University of Thessaly, 38334 Volos, Greece
3 Condensed Matter Physics Lab, Department of Physics, University of Thessaly, 35100 Lamias, Greece
4 Department of Mechanical Engineering, University of West Attica, 12243 Athens, Greece
* Correspondence: thkarak@uth.gr; Tel.: +30-223-106-0280
† Presented at the International Conference EWaS5, Naples, Italy, 12–15 July 2022.

Abstract: Heavy metals can contaminate water through both natural processes and anthropogenic
activities. Unlike organic contaminants, heavy metals are toxic, not biodegradable, and possess the
ability to accumulate in organisms. Effective mixing between contaminated water and nanoparticles
is of great importance in various purification applications of microfluidics, especially when heavy
metals are involved. In these terms, a series of simulations were performed to succeed in an effective
mixing of iron oxide nanoparticles in the duct. The selected geometry for the simulations was the
Tesla valve which was used as a micromixer. In the present work, a stream loaded with nanoparticles
and a stream with contaminated water are numerically studied for various inlet velocity ratios of the
two streams. Better mixing is achieved, compared with relative works, under Vp/Vc = 10, for an inlet
rate of the Fe3O4 nanoparticles per second equal to 1000.

Keywords: heavy metals; Tesla valve; nanoparticles; micromixers; Fe3O4; OpenFoam; water treatment

1. Introduction

The combined properties of heavy metals, i.e., non-biodegradable, unmetabolized,
or decomposed, and their ability to accumulate in environmental systems make them
extremely dangerous for human health [1]. Moreover, heavy metals are categorized as
essential (Zn, Cu, Fe, and Co) and nonessential (Cd, Hg, As, and Cr). This classification is
based on their toxicity, for example, even at low concentrations essential heavy metals are
harmless, unlike nonessential metals, which are highly toxic [2]. Several studies investigate
the synthesis of nanoparticles and adsorption properties of Fe3O4 magnetic nanoparticles
for the removal of heavy metal ions. Chang and Chen [3] found that the adsorption
equilibrium time was 1 min for monodisperse Fe3O4 magnetic nanoparticles with a mean
diameter size of 13.5 nm. In addition to synthesis of nanoparticles, several parameters
affect the adsorption efficiency of heavy metals, such as pH, contact time, temperature,
adsorbent dose, and initial ion concentration [2].

Modern water flow simulations explore novel mechanisms occurring at the nanoscale
for water purification [4]. The main purpose of this numerical study was to achieve the
optimum mixing between streams of nanoparticles and contaminated water, where the
heavy metal could be captured by nanoparticles through chemical reactions under various
initial conditions [2]. Passive micromixing systems are defined through virtue of their
geometry and any natural flow features that arise [5]. Generally, passive micromixers [1]
are more reliable in comparison to active micromixers [6], mostly due to a reduction in
moving parts. In micromixers, the flow rates and the regime of the fluids are significantly
low and laminar, respectively. The mixing of the fluids is mainly dependent on diffusion
with a very low mixing efficiency [7].
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Many variations of Tesla’s geometries which were used either as valves [8,9] or as
micromixers [10] have been investigated during the last years. The main factors affecting
the mixing efficiency are the Reynolds number (Re) and geometric parameters [11]. In
previous studies, the Reynolds number varied from 0.05 to 100 [10,11], while the mixing
efficiency reached up to 96.47% for Re = 52.5 and eight Tesla units [12]. The geometric
parameters of existing micromixers show a high variety of lengths and contact angles (θ◦).
It should be noted that Tesla valves can be used as forward or inverse flow micromixers.

In the present study, a Tesla valve was used as a passive micromixer where a heavy-
metal-contaminated water stream and a freshwater stream loaded with nanoparticles are
inserted in a microfluidic duct with variable inlet velocity ratios. The novelty of this work
is that discrete methods are used in order to simulate the nanoparticle trajectories inside
the single Tesla’s valve geometry. Numerical simulations were performed for the study
of the effect of inflow on the particle distribution in the duct. The methodology for water
flow and particle motion simulation is described in Section 2. The results of the mixing
performance are discussed in Sections 3 and 4, respectively. Finally, the most important
conclusions are summarized in Section 5.

2. Materials and Methods

The slow water flow in the micromixer duct is expected to be laminar and steady
state. The inlet of the micromixer is a squared cross section with height and width of
W = H = 10−4 m. The angle θ = 30◦ and the length ratio of L1/L2 = 2 were selected from an
existing Tesla structure [12]. The two water streams enter the micromixer from different
inlets (with the same dimensions), are mixed, and then leave the domain from the common
outlet as is shown in Figure 1. Additionally, the physical and mechanical properties of
Fe3O4 have an impact on interactions and thus they were numerically embedded in the
simulations. The values of these properties found from the literature correspond to a
density equal to 5180 kg/m3 [13], Poisson’s ratio equal to 0.31, and Young’s modulus
200 × 109 Pa [14].
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The incompressible Navier–Stokes equations are solved in the Eulerian frame, for the
pressure p and velocity u, together with a model for the discrete motion of particles in a
Lagrangian frame. Due to microfluidic duct size, nanoscale effects such as wall interference
on fluid properties and transport properties [15] are suppressed. Governing equations of
the fluid phase are given by [1]:

∇·u = 0 (1)

∂u
∂t

+ u·∇u = −∇p + v∇2u (2)

where t is time and v the kinematic viscosity of the water. The motion equations of each
single particle in the discrete frame are based on the Newton law and may read as follows:

mi
∂ui
∂t

= Fnc,i + Ftc,i + Fdrag,i + Fgrav,i (3)
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Ii
∂ωi
∂t

= Mdrag,i + Mcon,i (4)

where the index i stands for the ith-particle and diameters di, ui, and ωi are its transversal
and rotational velocities, respectively, and mi is its mass. The mass moment of inertia matrix
is Ii and the terms ∂ui/∂t and ∂ωi/∂t correspond to the linear and angular accelerations,
respectively. Fnc,i and Ftc,i are the normal and tangential contact forces, respectively. Fdrag,i
stands for the hydrodynamic drag force, and Fgrav,i is the total force due to buoyancy. Mdrag,i
and Mcon,i are the drag and contact moments, respectively.

The Reynolds number (Re) is defined as:

Re =
ρVD

µ
=

VD
v

(5)

where ρ = 103 kg/ m3 is the density of the fluid, µ is the fluid dynamic viscosity coefficient,
while ν = 10−6 m2/s is the kinematic viscosity of the fluid. D is a characteristic linear
dimension that is equal to the hydraulic diameter (Dh); for a square inlet duct Dh = W = H =
10−4 m. Finally, V is the maximum velocity that is developed inside the duct. Re was found
to be 0.63 and 0.1 for the Vp/Vc = 10 and Vp/Vc = 1, respectively, in the present work.

Mixing efficiency (n) of the Tesla micromixer is defined as [16]:

n = 1−

√
σ2

C
σ2

max
= 1−

√
1

N−1 ∑N
i=1
(
Ci − C

)2

C
(
1− C

) (6)

where σ and σmax are the standard deviation and the maximum deviation, respectively. N
is the number of sampling points and N − 1 is given by applying Bessel’s correction. Ci is
the point concentration and C is the mean concentration from sampling points.

The OpenFoam platform is used for the calculation of the flow field and the uncoupled
equations of particle motion [17,18]. The simulation process reads as follows: initially, the
fluid flow is found using the incompressible Navier–Stokes equations and the pressure
correction method. Upon finding the flow field, pressure and velocity, the motion of
particles is evaluated by the Lagrangian method. The equations are evolved in time by
Euler’s time marching method. An unstructured computational grid composed of 62,899
(tetrahedra) cells is used here as shown in Figure 2, which is adequate for the low Reynolds
number of the flow. Details of the numerical models, force, and moment terms used on
equations may be found in [19,20].
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3. Results

A series of simulations were performed with different velocity ratios of the con-
taminated water (Vc) and the nanoparticle solution (Vp) streams for optimum mixing.
Simulation parameters as well as the boundary conditions are presented in Table 1. Initially,
the examination of the inlet velocity ratio occurs as shown in Figure 3a,b, which represents
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the velocity field inside the micromixer for the Vp/Vc = 10 and Vp/Vc = 1, respectively. It
is clear that for the higher velocity ratio the velocity field is decreased inside the duct.

Table 1. Simulation parameters.

Inlet, outlet dimensions of geometry Height (H) = Width (W) = 1 × 10−4 m

Diameter of nanoparticles 13.5 nm

Nanoparticles per second 500 and 1000

Boundary conditions Velocity (U) (m/s) Pressure (p) (pa)

Contaminated water–heavy metals (Vc) 0.0005, 0.00005 zero gradient

Nanoparticles (Vp) 0.0005 zero gradient

Outlet zero gradient 0

Walls 0 zero gradient
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The first outcomes (before mathematical analysis) of the investigation for optimum
mixing under various inlet velocities ratios of the micromixer are presented in Figure 4a,b.
The rate of nanoparticles remains constant for the entire simulation. In Figure 4a,b, we
provide 500 Fe3O4 nanoparticles per second at the upper half inlet of the micromixer. Under
Vp/Vc = 10 (4a), a satisfying distribution is observed at the begging of the micromixer. In
addition, the upper part (loop) of the micromixer is full of Fe3O4 nanoparticles. Near the
common outlet, a very satisfying mixing is observed for all inlet rates of nanoparticles. It
should be noticed that in the present simulations only one Tesla valve is used compared
with previous works. However, under Vp/Vc = 1 (4b), no mixing is observed inside the
whole length of the micromixer. Hence, there is no need for further investigation of the
case study Vp/Vc = 1.

Nanoparticle concentrations were calculated for N samples near the exit of the duct.
The quantification of the results show that mixing efficiency increased with the increase in
the inlet rate of Fe3O4 nanoparticles. When the rate was equal to 500 Fe3O4 nanoparticles
per second, the mixing efficiency was 46.5%, while for 1000 Fe3O4 nanoparticles per second,
the mixing efficiency was 52.8%.
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micromixer under (a) Vp/Vc = 10; (b) Vp/Vc = 1.

The distribution of nanoparticles is visualized in Figure 5 through a cross section of
the micromixer near the exit. An inlet rate equal to 500/s nanoparticles was determined
in all regions of the micromixer (Figure 5a). The majority of nanoparticles are localized in
the middle layers of the micromixer. At the bottom of the micromixer, the concentration
is minimized. Additionally, for rates equal to 1000/s, the nanoparticles also exist in all
regions and seem to be more distributed across the micromixer (Figure 5b). Moreover, it
is encouraging that for both inlet ratio cases, the second layer (from bottom) has a high
concentration. This may be a counterbalance for the first layer where the concentration is
at a minimum.
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4. Discussion

To summarize the existing results, mixing is not achieved for all the cases with Vp/Vc = 1
under all the selected rates of Fe3O4 nanoparticles. As the Vp/Vc increases, the nanopar-
ticles are spread to almost the full height of the micromixer as shown in Figure 3a. The
results of the estimation of the mixing index in Equation (6) show that for an inlet rate equal
to 500 Fe3O4 nanoparticles per second, the mixing efficiency was 46.5%, while for 1000
Fe3O4 nanoparticles per second, the mixing efficiency was 52.8%. Hence, mixing efficiency
seems to have a correlation with the inlet rates of Fe3O4 nanoparticles. Additionally, the
inlet velocity ratio seems to be crucial for the mixing efficiency of micromixers, since for the
simplest geometries [19] with or [1] without an external magnetic field, the factor Vp/Vc
dominates over other factors such as radius ratio and frequency of the magnetic field.

Moreover, comparing with previous works where a Tesla valve was used as a mi-
cromixer, our results seem encouraging. Weng found 26.10% [12] for a single Tesla mi-
cromixer which is half of the present work. It should be noted that the present geometry
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is based on Weng. Additionally, our mixing efficiency for 1000 Fe3O4 nanoparticles per
second (52.8%) is comparable with Weng (51.93%) after the second Tesla valve. Hence, the
selected initial conditions in the present work result in successful mixing with fewer Tesla
units. Additionally, for an inverse type micromixer, Wang found mixing efficiency equal to
45.7% [10] with the first Tesla unit.

5. Conclusions

In the present work, Tesla’s valve geometry was used as a micromixer. In order to
succeed in creating a uniform distribution of Fe3O4 nanoparticles inside the micromixer,
various inlet velocity ratios were investigated, while forward flow was selected. The results
from simulations show that as the velocity is equal to Vp/Vc = 10, the nanoparticles are
spread uniformly across the length of the micromixer and occupy a large percent of the
height of the micromixer near the common exit. The lower boundary of the velocity ratio
is found where an effective mix is achieved. Hence, the next concern is to determine
the upper boundary of the velocity ratio. Above the upper boundary, the velocity ratio
will not intensively affect the mixing efficiency. The initial rates of nanoparticles seem
to have a secondary role to mixing efficiency. Moreover, further investigation of mixing
performance is needed either for reverse flow or adding Tesla’s valves in a series according
to the bibliography. In addition, an external magnetic field for further investigation of
micromixing enhancement will be embedded to expand this simplified model.
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