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Abstract: Only a few scientific research studies referencing extremely low flow conditions have been 
conducted in Greece so far. Forecasting future low stream flow rate values is a crucial and decisive 
task when conducting drought and watershed management plans by designing construction plans 
dealing with water reservoirs and general hydraulic works capacity, by calculating hydrological and 
drought low flow indices, and by separating groundwater base flow and storm flow of storm 
hydrographs, etc. The Artificial Neural Network modeling simulation method generates artificial 
time series of simulated values of a random (hydrological in this specific case) variable.  
The present study produces artificial low stream flow time series of part of 2015. We compiled an 
Artificial Neural Network to simulate low stream flow rate data, acquired at a certain location of 
the entirely regulated, urban stream, which crosses the roads junction formed by Iokastis road and 
an Chrisostomou Smirnis road, Agios Loukas residential area, Kavala city, Eastern Macedonia & 
Thrace Prefecture, NE Greece, during part of July, August, and part of September 2015, until  
12 September 2015, using a 3-inches conventional portable Parshall flume. The observed data were 
plotted against the predicted one and the results were demonstrated through interactive tables by 
providing us the ability to effectively evaluate the ANN model simulation procedure 
performance. Finally, we plotted the recorded against the simulated low stream flow rate data by 
compiling a log-log scale chart, which provides a better visualization of the discrepancy ratio 
statistical performance metrics and calculated further statistic values featuring the comparison 
between the recorded and the forecasted low stream flow rate data. 

Keywords: artificial neural network; discrepancy ratio; drought; low flow data; Parshall flume 
 

1. Introduction 

Low flow regimes in rivers and streams are of paramount importance to the ecological 
conditions of any land surface hydrological feature. Any shift in the flows pattern throughout any 
hydrological year, stemming, for instance, from either individual activities, e.g., groundwater 
abstraction, precipitation shortage, riparian areas encroachment, stream channelizing due to 
urbanization etc., or a combination of them, may contribute to stream ecology changes that cannot 
be undone [1]. Low flow analysis and forecasting is also fundamental when building works along 
watercourses (e.g., dams, reservoirs, water deviation channels for irrigation purposes, etc.) and for 
watercourse rehabilitation plans regarding which a knowledge of hydrological fluctuation is of 
fundamental importance in designing sustainable rehabilitation works. 

Another type of low flow analysis, specifically probability distribution analysis, was 
performed in the past analyzing the observed data collected at the same gauging station between  
25 July 2015 and 11 September 2015, which revealed that Dagum (4P) demonstrated the highest final 
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goodness of fit obtained score based, simultaneously, on all available (Anderson-Darling, Chi-Squared, 
and Kolmogorov-Smirnov) goodness of fit criteria [2]. 

Another type of low flow analysis, specifically probability distribution analysis, was 
performed in the past by analyzing the observed data collected at another, with similar features, 
gauging station, located at the outlet of Perigiali Stream, Kavala City, NE Greece, NE 
Mediterranean Basin, between 14 May 2016 and 31 July 2016, which reveals that Pearson type 6 (3P) 
demonstrated the highest final goodness-of-fit obtained score based, simultaneously, on all 
available (Anderson-Darling, Chi-Squared, and Kolmogorov-Smirnov) goodness-of-fit criteria [3]. 
Furthermore, as far as the same gauging station, (Perigiali Stream watershed outlet), a similar type 
of analysis was elaborated considering, this time, the observed data collected at the same gauging 
station between 14 May 2016 and 29 August 2016, revealing that Wakeby type (5P) demonstrated 
the highest final goodness-of-fit obtained score based on the Kolmogorov-Smirnov goodness-of-fit 
criterion and employed to generate an artificial low flow time series for the same time interval [4,5]. 
The Monte-Carlo simulation method, as another type of low flow analysis, was employed to define, 
by generating multiple attempts, the anticipated value of a random (hydrological in the specific 
case) variable to the above mentioned gauging station, located at the outlet of Perigiali Stream, 
Kavala City, NE Greece, NE Mediterranean Basin, between 14 May 2016 and 31 July 2016 [6]. 

Especially within the last decade, a great number of ANN models have been designed for 
stream flow and sediment transport rates simulation. In a scientific research article, an ANN model 
was employed to design a model for streamflow forecasting by respecting the San Juan River basin, 
Argentina, using meteorological data from Pachon meteorological station built at 1900 m of altitude 
and proved distinctively effective for fitting the observed stream flow data remarkably well [7]. In a 
scientific research article, an ANN model was developed and proved effective for simulating the 
daily high and low flows, in Mesochora catchment, (drained by the Acheloos River), central 
mountain region of Greece [8]. In another scientific research article, the performance of three 
different ANN schemes (a, b, and c) was tested in order to calculate bed load transport rate in 
gravel-bed rivers running within the Snake River Basin, U.S.A. [9]. In another scientific research 
article, an ANN model was developed and proved capable of stream flow modeling of Savitri 
catchment, India [10]. In another scientific research article, an ANN model was designed and 
performed adequately of stream flow modeling of Nestos River, NE Greece [11]. In another 
scientific research article, an ANN model, (M13.10.1), was found to best fit and model the low stream 
flow data recorded at the outlet of Perigiali Stream, Kavala city, NE Greece, NE Mediterranean 
Basin [12]. 

In the present scientific research study, ANNs have been employed to design a forecasting 
model for the daily low flows of Iokastis Stream (at an intermediate point of the stream channel, 
within the urban area, of the homonymous watershed), Kavala city, Eastern Macedonia and Thrace 
Prefecture, NE Greece, NE Mediterranean Basin. Their selection is founded on the fact that they 
perform remarkably well (together within other sectors of scientific interests) in the field of 
hydrology. However, in some occasions, there are no available adequate information respecting all 
the variables contributing to the watershed system driving forces. 

2. Study Area 

The stream flow rate gauging station, which was established near the junction formed by Iokastis 
and Chrisostomou Smirnis roads, Agios Loukas residential sector, Kavala city, (NE Greece, NE 
Mediterranean Basin), a coastal city, located at the north of the Aegean Sea, across the Thassos Island, 
refers to an intermediate point of an absolutely channelized stream with bed, walls, and most of his top 
length is made from steel reinforced concrete. Thus, the major part of the stream’s length and, 
consequently, its associated flow are invisible. It is surrounded by the Lekani mountain series branches 
to the North and East and the Paggaion Mountain ramifications to the West, (established in the 
proximity of the city urban web center and at the north exit of the city as well). More precisely, it is 
located at the specific co-ordinates 40°55′57.70″ N and 24°23′19.74″ E, Kavala city area, and operated 
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continuously, which spans a time period from 25 July 2015 to 11 September 2015, as illustrated in 
Figure 1. 

 
Figure 1. Parshall flume (conventional) gauging station, Iokastis Stream area, Kavala city, Greece. 

3. Materials and Methods 

We considered the stream flow data observed during a continuous period of 2015, more 
precisely, during part of July (from 25 July 2015), August 2015, and part of September 2015 (until 11 
September 2015, when unfortunately, a sudden storm associated with heavy rainfall, caused a flash 
flood, which destroyed the apparatus). 

The distinctively shallow waters, exacerbated by the extremely low water stream flow velocity 
occurring at the gauging station, make it impossible to perform the area-velocity method in order to 
calculate the stream flow rate (discharge) by using a current meter mounted on a wading rod due to 
the fact that there is no adequate depth to submerge the current meter. Moreover, the pronounced 
low water stream flow velocity is not sufficient enough to trigger the operation of a current meter. 
Under those noticeable circumstances, the only other remaining options are the use of either a 
small-sized portable weir (its implementation brings difficulties due to the fact that weirs, in general, 
demand a relatively great head loss, which is not available at areas in proximity to watersheds’ 
outlets, where, in most cases, the natural slope of the channel bed is extremely low if not zero) plate or 
a small-sized flume, which, eventually, was our final selected option. More specifically, “3-inch 
U.S.G.S. Conventional Portable Parshall Flume” [13–24], made of pre-fabricated plastics, covered with 
a sprayed thin smooth polyester coating, which is identical to the industry covers the outside surface 
of high-speed sea boats, in order to reduce the friction developing between the outside area of those 
sea boats and the sea water, which secures that the friction developed between the bottom as well as 
the walls of the stream flow rate gauging apparatus is minimized/restricted to a minimum. 

Meteorological data has been collected from Dexameni–Kavala city–Eastern Macedonia and 
Thrace Prefecture–NE Greece–NE Mediterranean Basin private meteorological station (located at 
40°56′25″ N–E24°24′01″ E, Altitude: 90 m). 

Low stream flow rate values were forecasted by employing MLFP that is an appropriate type 
of ANNs both for meteorological as well as for river stream flow rate predictions. 
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4. Results and Discussion 

Employing MATLAB software, various different designs of MLFP were elaborated on with a 
different number of neurons within both the input as well as the hidden layers. The superb model 
for daily forecasting (in the present study, M17.10.1) is described within the first following subsection 
while the referenced statistical criteria are displayed within the second one. The three important 
identification characteristics of the model are as following: the number of neurons in input (i), hidden (j), 
and output (k) layers, respectively. 

4.1. Structure of Artificial Neural Network (M17.10.1) 

A custom neural network (abbreviated as M17.10.1) was employed in order to simulate all the  
49 site-measured values of the observed stream flow rate, as depicted within Table A1, with the 
following architecture: Network Type: Feed-forward back propagation, Training Function: TRAINGDX, 
Adaption Learning Function: LEARNGDM, Performance Function: MSE, Number of Layers: 2, Number 
of Neurons: 10, and Transfer Function: LOGSIG. It should also be stressed that epochs were selected 
equal to 1000. The input data for 49 site measurements were arranged as a time series with a length of  
49 data. The selected custom neural network’s architecture used for this simulation is depicted within 
Figure 2. 

 
Figure 2. ANN (M17.10.1) architecture plot of Iiokastis-Chrisostomou Smirnis Stream. 

The input layer for this network consists of 17 neurons representing (for the same period ranging 
from 25 July 2015 to 11 September 2015) as following: total daily rainfall R, cumulative total daily rainfall 
RC, mean daily wind velocity UWave, maximum daily wind velocity UWmax, mean daily wind gusts 
velocity UWgave, maximum daily wind gusts velocity UWgmax, mean daily air temperature Tave, minimum 
daily air temperature Tmin, maximum daily air temperature Tmax, mean daily air humidity Have, minimum 
daily air humidity Hmin, maximum daily humidity Hmax, mean daily air pressure Pave, minimum daily air 
pressure Pmin, maximum daily air pressure Pmax, mean daily discomfort index Tdi, and mean daily dew 
point temperature Tdp. For this network, 10 neurons were selected for the hidden layer. 

The validation performance of the ANN (M17.10.1) is illustrated within Figure 3. 
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Figure 3. ANN (M17.10.1) validation performance plot of Iokastis-Chrisostomou Smirnis Stream. 

The training regression performance of the ANN (M17.10.1) is illustrated within Figure 4. 

 
Figure 4. ANN (M17.10.1) training regression performance plots of Perigiali-Chrisostomou Smirnis Stream. 

4.2. Model Statistical Efficiency Criteria and Performance Metrics 

The respective statistical criteria values concerning the Iokastis Stream regarding the selected 
artificial neural network (M17.10.1) are depicted in Table 1 [25]. The relative error value depicted in 
Table 1 represents the average value of the relative errors calculated for each pair of calculated and 
site measured low stream flow rate values. 

The plot depicted in Figure 5 represents the discrepancy ratio concerning Iokastis Stream with 
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reference to the selected artificial neural network, depicting graphically, as far as the present study 
is concerned, the percentage of the computed low stream flow rate values lying between the double 
and half of the corresponding recorded values. At this point, it should be noted that both 
coordinate axes are in a logarithmic scale. Therefore, the equations y = x, y = 0.5x, and y = 2.0x are 
represented graphically by parallel straight lines [26]. 

 
Figure 5. Discrepancy ratio plot of Perigiali Stream (ANN M17.10.1). 

Table 1. Statistical criteria values of Perigiali Stream (ANN M17.10.1). 

Number of Paired Values RMSE (ltrs/s) RE (%) EC r r2 Discrepancy Ratio 
49 0.0718 −0.0054 0.9303 0.9664 0.9340 1.0000 

In general, the obtained values of the statistical criteria RMSE, RE, and EC for Iokastis Stream 
can be considered fairly satisfactory. Additionally, the degree of linear dependence between 
computed and observed low daily stream flow rate is very high. 

The dates of all measurements as well as both the site measured as well as the calculated 
stream flow rates of Perigiali Stream are presented in Table A1 (on demand). 

5. Discussion–Conclusions–Further Research 

Lots of models based on the ANN procedure concept have been employed and proposed by 
researchers so far in order to model daily stream flow and sediment transport rate worldwide. In the 
present study, a custom neural network (abbreviated as M17.10.1) was employed in order to simulate all 
the 49 site-measured values of the observed low stream flow rate (as depicted within Table A1) with the 
certain architecture, using several meteorological parameters (exogenous variables of the runoff 
generating processes) as inputs, which prevails around the study area. This turned out, among others, to 
be the most appropriate way to simulate the recorded daily, low stream, flow rate data. The resulted 
statistical efficiency criteria proved a strong relationship between those meteorological parameters 
involved and the daily stream flow rate of Iokastis Stream, Kavala city, Greece, which suggests that the 
ANN modeling concept is able to efficiently simulate an observed daily low stream flow rate data, 
which is essential for water resources management at a watershed level in terms of drought forecasting 
and management, water reservoir and water deviation works design, agricultural schemes planning at a 
regional level, filling gaps within low stream flow rate time series, low-flow indices calculation for 
environmental purposes, model implementation in uncaged catchments in order to generate artificial 
low stream flow rate data, etc. Furthermore, the fact that the observed data represents short time 
intervals instead of an adequately long continuous time series can be considered as a limitation 
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underlining the need of more collected low stream flow rate recorded data in order to prove that our 
model can be regarded as an undoubtedly reliable one. In the future, provided that a proper and 
adequate apparatus is available, we intend to monitor water quality parameters in order to perform 
statistical analysis and assessment [27,28] and apply stochastic models [29] to predict future respecting 
values, which are essential toward establishing a holistic Iokastis-Chrisostomou Smirnis Stream 
watershed management scheme. 

Funding: This research received no external funding.  

Conflicts of Interest: The author declares no conflict of interest. 

Appendix A 

The dates of all measurements as well as both the site measured/recorded/observed as well as 
the calculated/forecasted/predicted/fitted stream flow rates of Perigiali Stream are presented in 
Table A1. 
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Table A1. Stream flow rate measurements of Iokastis (& Chrisostomou Smirnis Roads Junction) Stream. 

No. Date (dd-mm-yy) Stream Flow Rate (m3/s) 
Site-Measured 

Stream Flow Rate (m3/s) Calculated 
(M17.10.1) 

1 25-7-2015 0.5866 0.7177 
2 26-7-2015 1.9370 1.8998 
3 27-7-2015 1.1212 1.2052 
4 28-7-2015 1.3574 1.3375 
5 29-7-2015 1.6240 1.5830 
6 30-7-2015 1.4066 1.4877 
7 31-7-2015 1.7590 1.6366 
8 1-8-2015 1.5730 1.5886 
9 2-8-2015 1.7080 1.7965 

10 3-8-2015 1.4890 1.4525 
11 4-8-2015 1.6630 1.5945 
12 5-8-2015 1.5350 1.5888 
13 6-8-2015 1.7120 1.7173 
14 7-8-2015 1.7510 1.7188 
15 8-8-2015 1.8560 1.8871 
16 9-8-2015 1.6770 1.6599 
17 10-8-2015 1.5920 1.5971 
18 11-8-2015 1.6040 1.5192 
19 12-8-2015 1.7260 1.6711 
20 13-8-2015 1.6330 1.7382 
21 14-8-2015 1.8820 1.6746 
22 15-8-2015 1.4920 1.5594 
23 16-8-2015 1.3089 1.2469 
24 17-8-2015 1.7675 1.7699 
25 18-8-2015 1.2138 1.2538 
26 19-8-2015 1.1671 1.3057 
27 20-8-2015 1.1671 1.1211 
28 21-8-2015 1.9170 1.8529 
29 22-8-2015 1.6900 1.6653 
30 23-8-2015 1.1212 1.1578 
31 24-8-2015 1.7142 1.6205 
32 25-8-2015 1.9865 1.8693 
33 26-8-2015 1.6093 1.6805 
34 27-8-2015 1.8759 1.8828 
35 28-8-2015 1.8214 1.8834 
36 29-8-2015 1.6093 1.6447 
37 30-8-2015 1.6093 1.5918 
38 31-8-2015 2.0426 1.9753 
39 1-9-2015 1.9309 1.8669 
40 2-9-2015 1.7142 1.6733 
41 3-9-2015 1.6330 1.5862 
42 4-9-2015 1.7440 1.7883 
43 5-9-2015 1.8950 1.9231 
44 6-9-2015 1.6620 1.7276 
45 7-9-2015 1.3574 1.3640 
46 8-9-2015 1.4563 1.6231 
47 9-9-2015 1.3574 1.3377 
48 10-9-2015 1.4563 1.4850 
49 11-9-2015 1.4066 1.3784 
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