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Abstract: Although disinfection is a crucial process for the safety of drinking water, it is responsible 
for the formation of disinfection by-products (DBPs) being accused of severe health problems. The 
present study presents the development of models predicting trihalomethanes (THMs) in a drinking 
water supply system in Greece. Although some of the developed models can be used for the 
prediction of THMs, they are site-specific and cannot be used extensively. 
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1. Introduction 

Disinfection is considered a particularly important process for drinking water safety, as it 
inactivates pathogenic micro-organisms protecting human health. Several outbreaks have been 
recorded in the past, due to many chemical and biological hazards in the drinking water supply chain. 
As disinfection is introduced in the drinking water process, waterborne diseases have been 
dramatically declined [1,2]. However, during the disinfection process, several disinfection by-
products (DBPs) are formed. Two main groups of DBPs are known: trihalomethanes (THMs) and 
haloacetic acids (HAAs). THMs include chloroform (CM), bromodichloromethane (DCBM), 
dibromochloromethane (DBCM), and bromoform (BM) [3]. The first studies on DBPs appeared in the 
1970s when Rook and others identified CM and other THMs in drinking water [3–5]. There are more 
than 600 DBPs reported and some of them are regulated while others are considered as emerging 
ones due to their lower occurrence level and effects [3,6]. THMs are formed mainly due to the 
reactions of chlorine with natural organic or inorganic matter. While DBPs formed are accused to be 
toxic and carcinogenic organic compounds, residual chlorine is crucial for the drinking water supply 
systems. Disinfection takes place normally in water reservoirs at the water supply network’s head 
and pathogens contaminate water as it travels along with the network and arrive at the consumers’ 
taps. Thus, the presence of residual chlorine is crucial. The present study presents the development 
of models predicting THMs (total, CM, BM, DCBM, DBCM) in a drinking water supply system in 
Greece. The models are data-driven, based on data gathered from the normal sampling procedures 
elaborated by the water utility. THMs predictive models are helpful to the water utility managers for 
decision making and can be used as a tool for the optimal selection of boosters to minimize DBPs 
formation and at the same time maintain the right disinfectant residual. 

2. Literature Review on DBPs Predictive Models 

DBPs predictive models’ development is a methodology increasingly recognized as it can be 
used by the water utility managers as a decision-making tool. For example, they can be used for 
setting the disinfection dose, the contact time, pH adjustment, etc. They are important because the 
aim is to reduce DBPs concentrations and at the same time maintain the required disinfectant residual 
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[1]. The existence of such models in regions and water distribution networks (WDNs) with the same 
characteristics could be useful, as they provide sufficient estimations of DBP concentrations that 
could minimize the need for complicated and expensive analysis of such compounds. Boosters’ 
optimal locations and sampling optimal locations can be identified using such models. 

The factors affecting the existence of DBPs are pH, chlorine dose, residual chlorine, temperature, 
contact time, the existence of organic materials, and seasonal variability [7,8]. While pH and 
temperature seem to be proportional to THMs concentrations, pH effects vary for different DBPs [9]. 
THMs concentrations vary throughout the water supply system, as higher concentrations are found 
in the network compared to the tanks [10]. This is probably due to the existence of biofilm formatted 
in pipes’ walls which reacts with the residual chlorine forming THMs. 

Data-driven statistical models and process-based ones are found in the literature to predict DBPs 
formation. Data-driven models are mainly based on the statistical relationships of dependent and 
independent variables [11]. Process-based models are based on the actual processes taking place in 
the WDN [11]. Process-based models are more difficult to be developed as parameter estimation 
within a process-based model is imprecise or difficult to obtain [12] or the data required for the 
development of process-based models are not available [11] and the laws of chemistry and 
mathematics for the formation of DBPs should be known in advance [11,13]. Data availability is a 
crucial issue for the data-driven models but as more data become available, the statistical models are 
used more and more. 

In previous studies, many DBPs prediction models have been developed and many of them are 
derived from linear and non-linear regression analysis. However, these models are site-specific and 
cannot be used widely. Some of these models have used laboratory data and other real field data. In 
Greece, only a few models have been developed for the Athens water supply system and water 
treatment plants [14–16], for river water in Lesvos island [17] and two water supply systems [1]. 

3. Materials and Methods 

The present study uses real field data to develop models predicting total THMs and each of the 
four THMs, namely CM, BM, DCBM, DBCM. The data are taken from a water utility serving a city 
of about 55.000 people. The data are gathered during sampling processes followed by the water utility 
according to the Greek institutional framework. The samplings are taken from different points of the 
water distribution network. Chlorination takes place in the reservoirs, using sodium hypochlorite 
and the dose is determined by the water utility. The sampling frequency is based on the water 
quantity abstracted and the number of consumers served, according to the national legislation. The 
data gathered are variables measured by the water utility during check and audit monitoring 
processes. As the frequency of audit monitoring is lower than the check one, the number of available 
data is limited. 

Statistical analysis is elaborated to develop the necessary models. Initially, the variables are 
tested for normality using the Kolmogorov–Smirnov (K–S) test to check the goodness-of-fit to the 
normal distribution [18] at significance level 0.05. The variables not following normal distribution are 
transformed. Then, the Pearson correlation matrix is used to examine the relationships between the 
variables. To perform a linear regression, the total trihalomethanes (TTHMs (or each one of THMs)) 
concentration (Y), is assumed to be a linear function of the inputs, X. The unknown parameters to be 
determined, ai are the coefficients, as given in (1): 

Y = a0 + a1 X1 + a2X2 + … + anXn (1)

where n is the number of inputs used. The coefficients are chosen to minimize the sum of the squared 
differences between the predicted and actual values of Y. Multiple regression analysis is used to 
evaluate the statistically significant variables at a level of significance α. The models are tested using 
ANOVA tests to check if the residuals of the models follow the normal distribution [19], and the mean 
value of the residuals is zero. The residuals should be evenly attributed above and below zero, 
otherwise, it should be suspected a calculation error or that an additional variable should be added 
to the regression model [18]. To check autocorrelation, the Durbin Watson estimate is calculated. R2 
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values are also gathered to check how well the model fits the data. Finally, the developed models are 
used for the validation of the results, comparing observed and predicted data. 

4. Results and Discussion 

The data gathered include pH, total organic carbon concentration TOC (mg/L), conductivity 
(µS/cm), residual chlorine (mg/L), turbidity (NTU), total THMs (µg/L) and the concentrations of the 
four THMs (chloroform—CM, bromoform—BM, bromodichloromethane—DCBM, and 
dibromochloromethane—DBCM) in µg/L. Water is abstracted from 27 different water boreholes. 
Data refer to a period of 5 years (2014–2018). TOC values range from 0.31 to 39.5 mg/L and TTHMs 
range from 0.48 to 68.35 µg/L, lower than the threshold. BM is 49.8% of the total TTHMs 
concentration, followed by DBCM (27.5%), while CM is only 6.27% of the total TTHMs concentration 
(Figure 1). Organic substances are not present in high concentrations in water as groundwater is 
abstracted. However, the existence of BM concentrations may indicate the presence of inorganic 
compounds such as Br− mainly due to anthropogenic factors and of seawater intrusion. Table 1 
presents the total number of values (N), average (AV), standard deviation (SD), minimum (MIN), 
and maximum (MAX) values of the parameters studied. 

Table 1. Total number, average, standard deviation, minimum and maximum values of the 
parameters. 

Parameter N AV SD MIN MAX 
pH 35 7.9314 0.3306 7.3 8.9 

Conductivity 35 690.0 171.7 419.0 1141.0 
Turbidity 35 0.2897 0.3964 0.10 2.45 

TOC 35 5.01 9.94 0.31 39.5 
Residual Chlorine 35 0.3417 0.1245 0.16 0.80 

TTHMs 35 10.67 14.86 0.48 68.35 
BM 33 5.64 8.14 0.35 33.73 

DCBM 20 3.07 5.23 0.14 16.43 
DBCM 33 3.115 5.735 0.12 25.43 

CM 19 1.233 1.649 0.13 5.76 

 
Figure 1. Allocation of the four trihalomethanes (THMs). 

The results of the K–S tests for the estimation of goodness-of-fit of the dependent variables of 
the model to the normal distribution showed that all dependent variables followed the normal 
distribution at significance level 0.05 except after log-transformation steps [17] and DCBM (Table 2). 
DCBM values were transformed using the Box-Cox transformation in Minitab. It was found that 
(DCBM)−0.6 follows normal distribution at significance level 0.05. Independent variables were also 
tested for normality using the K–S test. Only pH, conductivity, and residual chlorine follow normal 
distribution at the 0.05 significance level. Thus, log-transformation for turbidity took place (Table 2). 
Regarding TOC another transformation took place using Box-Cox transformation. It was found that 
(TOC)−2 follows normal distribution at significance level 0.05. 

The relationships between the variables were examined by Pearson correlation matrix. Pearson 
correlation values show a strong positive correlation between TTHMs and BM, DCBM, DBCM, and 
CM concentrations which is logical as the 4 THMs form the total TTHMs (Table 3). TTHMs have a 
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moderate positive correlation with TOC (r = 0.587), water pH (r = 0.497) and a moderate negative one 
with conductivity (r = −0.446) (Table 3). These findings are in accordance with previous studies. TOC 
values show a moderate positive correlation with turbidity (r = 0.570). BM values show a positive 
moderate correlation with water pH (r = 0.580) and TOC (r = 0.622). DCBM and CM values show 
strong positive correlations with TOC (r = 0.857 and r = 0.968) while DBCM values show a moderate 
one (r = 0.349). All four THMs show negative moderate correlations with conductivity (r ranging from 
−0.456 to −0.327) as shown in Table 3. Like BM, DCBM shows a moderate positive correlation with 
pH (r = 0.546) while DCBM and DBCM show a very low negative correlation. 

Table 2. Kolmogorov–Smirnov (K–S) values for the dependent and independent variables. 

Parameter K–S Parameter K–S Parameter K–S Parameter K–S 
pH 0.104 Turbidity 0.364 DBCM 0.372 (DCBM)−0.6 0.179 

Conductivity 0.150 TTHMs 0.249 CM 0.330 logDBCM 0.133 
TOC 0.442 BM 0.258 logTTHMs 0.134 logCM 0.130 

Residual Chlorine 0.178 DCBM 0.344 logBM 0.153 logturbidity 0.151 
      (TOC)−2 0.160 

Table 3. Pearson correlation values for the variables. 

Parameter TTHMs pH Cond. TOC Res. Chlor. Turb. BM DCBM DBCM 
pH 0.497         

Cond. −0.446 −0.397        
TOC 0.587 0.171 −0.338       

Res. Chlor. 0.05 0.216 0.044 0.106      
Turb. 0.249 −0.032 −0.023 0.570 −0.031     
BM 0.958 0.580 −0.380 0.622 0.024 0.204    

DCBM 0.566 −0.169 −0.416 0.857 0.023 0.229 0.759   
DBCM 0.921 0.546 −0.456 0.349 −0.018 0.212 0.852 0.284  

CM 0.906 −0.075 −0.327 0.968 0.120 0.200 −0.010 0.979 0.573 

Based on the data, multiple regression analysis was applied at significance level α = 0.05 for 
TTHMs, BM, DCBM, DBCM, and CM. Throughout the process of models’ development, several 
linear and non-linear regression analyses were performed. The inclusion of each variable in the 
proposed model was based on the t-criterion [20]. Methodological details about the model 
development are extensively discussed in past studies [1,15,21]. 

The first model predicts the TTHMs’ concentrations. All variables are initially used as 
independent variables (inputs). As the independent variables are not statistically significant (p > 0.05), 
they are excluded one-by-one from the model development process (Table 4). Finally, only pH and 
TOC−2 are found to be statistically significant (p < 0.05) (Table 5). R2 value is 61.61% for this model, 
which shows that it can be used in a satisfactory way for the prediction of TTHMs. All statistical 
analysis data are given in Table 5. Durbin Watson estimate provided in Table 5, is used to check 
autocorrelation. The values of the Durbin–Watson statistic were found to be 1.70419, showing that 
there is no autocorrelation. The model is 

logTTHMs = −3.84 + 0.633 pH − 0.1056 TOC−2 (2)

The second model predicts BM concentrations. The independent variables found to be 
statistically significant (p < 0.05), after excluding the not statistically significant ones, are pH and 
TOC−2 (Tables 4 and 5). The value of R2 is 53.64%, showing that the model provides a relatively good 
estimation for the prediction of BM concentrations (Table 5). Durbin Watson estimate is found to be 
1.38332 and no autocorrelation exists. The model predicting BMs developed is 

logBM = −4.55 + 0.679 pH − 0.0923 TOC−2 (3)
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Table 4. Initial data from the multiple regression analysis for all models. 

Term Coef t-Value p-Value Term Coef t-Value p-Value Term Coef t-Value p-Value 
logTTHMs model logBM model DCBM−0.6 model 

Constant −4.42 −2.42 0.022 Constant −6.54 −3.29 0.003 Constant 1.42 0.32 0.754 
pH 0.702 3.26 0.003 pH 0.913 3.88 0.001 pH −0.171 −0.33 0.750 

Conductivity 0.000281 0.67 0.507 Conductivity 0.000772 1.80 0.084 Conductivity 0.00132 0.96 0.353 
TOC−2 −0.1026 −4.21 0.000 TOC−2 −0.0725 −2.60 0.015 TOC−2 0.2085 2.98 0.010 

Res. Chl. −0.212 −0.41 0.688 Res. Chl. −0.429 −0.91 0.370 Res. Chl. −2.12 −0.89 0.390 
logTurbidity 0.152 0.57 0.576 logTurbidity 0.496 1.76 0.090 logTurbidity −0.971 −1.46 0.167 

logDBCM model logCM model     
Constant −6.48 −3.27 0.003 Constant 0.11 0.04 0.968     

pH 0.884 3.74 0.001 pH 0.182 0.57 0.580     
Conductivity 0.00035 0.75 0.462 Conductivity −0.00152 −1.69 0.115     

TOC−2 −0.1112 −4.03 0.000 TOC−2 −0.08 −2.37 0.034     
Res. Chl. −0.240 −0.40 0.692 Res. Chl. 0.039 0.06 0.955     

logTurbidity 0.296 1.02 0.318 logTurbidity 0.338 0.53 0.602     

Table 5. Statistical analysis data for the models developed. 

Term Coef t-Value p-Value Model R2 Durbin Watson 
Constant −3.84 −2.51 0.018 

logTTHMs = −3.84 + 0.633 pH − 0.1056 TOC−2 61.61% 1.70419 pH 0.633 3.34 0.002 
(TOC)−2 −0.1056 −5.30 0.000 

Constant −4.55 −2.49 0.019 
logBM = −4.55 + 0.679 pH − 0.0923 TOC−2 53.64% 1.38332 pH 0.679 3.03 0.005 

(TOC)−2 −0.0923 −3.69 0.001 
Constant 0.619 2.49 0.023 

DCBM−0.6 = 0.619 + 0.2749 TOC−2 64.27% 2.34693 
(TOC)−2 0.2749 5.69 0.000 

Constant −5.89 −3.42 0.002 
logDBCM = −5.89 + 0.809 pH − 0.118 TOC−2 65.95% 2.06195 pH 0.809 3.81 0.001 

(TOC)−2 −0.118 −5.17 0.000 
Constant 0.397 2.05 0.056 

logCM = 0.397 − 0.0974 TOC−2 37.62% 2.16963 
(TOC)−2 −0.0974 −3.20 0.005 
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DCBM concentrations’ prediction model is then developed. Only TOC−2 was found to be 
statistically significant (p < 0.05) (Table 4). The same methodology as before was used. The model 
provides a good estimation for the prediction of DCBM concentrations, as R2 value is 64.27% (Table 
5). No autocorrelation exists as Durbin Water estimate is found to be 2.3469. The model to predict 
DBCM concentrations is developed following the same methodology. The independent variables 
being statistically significant are pH and TOC−2 (Tables 4 and 5). The model can be used for the 
prediction of DBCM concentrations as it provides a very good estimation (R2 = 65.95%). No 
autocorrelation exists as Durbin Water estimate is found to be 2.06195. The last model developed is 
the one predicting CM concentrations following the same methodology. Only TOC−2 is found to be 
statistically significant (p < 0.05). As the R2 value is 37.62%, the model does not provide a good model 
for the prediction of CM. The Durbin Watson estimate is 2.16963 showing that there is 
autocorrelation. The models developed are 

DCBM−0.6 = 0.619 + 0.2749 TOC−2 (4)

logDBCM = −5.89 + 0.809 pH − 0.1180 TOC−2 (5)

logCM = 0.397 − 0.0974 TOC−2 (6)

ANOVA tests are elaborated for all models. Statistical examination showed that the residuals of 
the models follow the normal distribution [19], and the mean value of the residuals is zero. In all 
cases, the analysis showed that the residuals are approaching normal distribution and the models are 
deemed valid to describe the experimental data (Figure 2a–e). 

  
(a) (b) 

  
(c) (d) 
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Figure 2. Residual plots for (a) model predicting total trihalomethanes (TTHMs); (b) model predicting 
bromoform (BM); (c) model predicting bromodichloromethane (DCBM); (d) model predicting 
bromodichloromethane DCBM; (e) model predicting chloroform (CM). 

The developed models are used for the validation of the results. A comparison between 
predicted and observed values for all proposed models is presented in Figure 3a–e. For the model 
predicting total THMs, it can be observed that it does not provide a satisfactory estimation of the 
THMs concentrations formed, as only 8.57% of the predicted values range in the ±20% of observed 
values. For the models predicting BM, DCBM, and DBCM, only 12.12%, 25.0%, and 9.09% of the 
predicted values range in the ±20% of observed values. Finally, none of the predicted values with the 
model predicting CM range in the ±20% of observed values, showing that the model is not reliable. 
The regression coefficients (R2) are ranging from 0.4562 to 0.6622 (Figure 3a–e), which is a moderate 
satisfactory level of explanation of the observed variability. 

  
(a) (b) 

  

(c) (d) 
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(e) 

Figure 3. Observed vs. predicted values for: (a) model predicting TTHMs; (b) model predicting BM; 
(c) model predicting DCBM; (d) model predicting DBCM; (e) model predicting CM. 

All models can be used for the prediction of total THMs, BM, DCBM, DBCM concentrations, 
except for the one predicting CM concentration. This model is weaker than the others as the dataset 
used contains a smaller amount of variables’ values (19 compared to 33 for BM, DBCM, and 35 to 
TTHMs). Although the number of variables’ values used for the prediction of DCBM are also a small 
number (20), it seems that the model is adequately reliable. An important factor affecting the 
reliability of the developed models is that THMs concentrations are low as the sampling takes place 
in the reservoirs before the entrance of the water into the water distribution network, where possible 
reactions with the biofilm found in the pipes’ walls take place. 

Comparing the models developed in this study with the models developed in other studies, it 
can be concluded that as pH increases, TTHMs, BM, DBCM concentrations increase. The data studied 
did not show a relationship between the concentrations of DCBM and CM with pH, probably because 
the dataset contains a small number of data. However, there are studies in the literature showing that 
the effect of pH varies on TTHMs formation [9]. The models developed show that as TOC 
concentrations increase, THMs values increase for all models. Such findings are in accordance with 
the findings from the literature [9]. 

Other explanatory variables such as disinfectant dose, reaction time, temperature, and others are 
not available in this study. The availability of reliable data is an issue mentioned in many studies 
affecting the choice of explanatory variables. All data are from samples taken in autumn. Studies 
have shown that higher THMs levels exist in the summer months. In the present study, it must be 
noted that the model is site-specific and cannot be used extensively. A limitation of the study is that 
the models are validated with the same dataset. 

5. Conclusions 

The present study uses real field data to develop total THMs models and models predicting each 
of the four THMs, namely CM, BM, DCBM, DBCM. The data are taken from a water utility serving a 
city of about 55.000 people. The data are gathered during sampling processes followed by the water 
utility according to the Greek institutional framework. The samplings are taken from different points 
of the water supply network. The paper: (a) investigates the formation of THMs during chlorination 
of groundwaters taking into consideration the available variables such as pH and TOC; (b) develops 
predictive models for the concentrations of total THMs, BM, DCBM, DBCM, and CM formed during 
chlorination of these groundwaters; and (c) statistically evaluates the developed models, in 
comparison to the models developed during previous studies for THMs [15,21] using the same 
modeling technique (multiple regression). 

The study’s results showed that models developed to predict the formation of total THMs, BM, 
DCBM, and DBCM are reliable and can be used. However, the model developed for CM prediction 
is not reliable. Reasons for that include the lack of enough data and lack of data for explanatory 
variables affecting the formation of THMs. Finally, as all samplings are done in autumn, it is 
suggested that seasonal variation should be taken into consideration elaborating more samplings all 
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over the year, to study the effect of the season in the formation of TTHMs, which is found to be related 
in other studies [15]. 

As the formation reactions of DBPs are complex, universally applicable models are difficult to 
be developed. The models developed can be used in regions and WDNs with the same characteristics. 
These models are useful for the water utility managers during the decision making for the 
disinfection dose, the pH adjustment, etc. Additionally, such models can be used to locate the optimal 
locations for chlorination boosters to achieve the desired chlorination and the right residual chlorine 
levels, without forming high THMs concentrations. Finally, these models in combination with the 
residual disinfectant ones can result in the optimal selection of sampling points for water quality 
control to be used for epidemiological studies and health risk assessment [9,22,23]. 

Author Contributions: Conceptualization, methodology, statistical analysis, and writing, S.T.; supervision, V.K. 
All authors have read and agreed to the published version of the manuscript.  

Funding: The research is elaborated within the framework of the invitation “Granting of scholarship for Post-
Doctoral Research” of the University of Thessaly, which is being implemented by the University of Thessaly and 
was funded by the Stavros Niarchos Foundation. 

Acknowledgments: The research is elaborated within the framework of the invitation “Granting of scholarship 
for Post-Doctoral Research” of the University of Thessaly, which is being implemented by the University of 
Thessaly and was funded by the Stavros Niarchos Foundation. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Tsitsifli, S.; Kanakoudis, V. Developing THMs’ predictive models in two water supply systems in Greece. 
Water 2020, 12, 1422, doi:10.3390/w12051422. 

2. Tsitsifli, S.; Kanakoudis, V. Disinfection impacts to drinking water safety—A review. Proceedings 2018, 2, 
603, doi:10.3390/proceedings2110603. 

3. Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarini, D.M. Occurrence, genotoxicity, and 
carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and 
roadmap for research. Mutat. Res. Rev. Mutat. Res. 2007, 636, 178–242. 

4. Rook, J.J. Formation of haloforms during chlorination of natural waters. Water Treat. Exam 1974, 23, 234–
243. 

5. Bellar, T.A.; Lichtenbert, J.J.; Kroner, R.C. The occurrence of organohalides in chlorinated drinking waters. 
J. Am. Water Works Assoc. 1974, 66, 703–706. 

6. Boorman, G.A.; Dellarco, V.; Dunnick, J.K.; Chapin, R.E.; Hunter, S.; Hauchman, F.; Gardner, H.; Cox, M.; 
Sills, R.C. Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environ. 
Health Perspect. 1999, 107, 207–217. 

7. Chowdhury, S.; Champagne, P.; McLellan, P.J. Models for predicting disinfection byproduct (DBP) 
formation in drinking waters: A chronological review. Sci. Total Environ. 2009, 407, 4189–4206. 

8. Ye, B.; Wang, W.; Yang, L.; Wei, J.; E., X. Factors influencing disinfection by-products formation in drinking 
water of six cities in China. J. Hazard. Mater. 2009, 171, 147–152. 

9. Sadiq, R.; Rodriguez, M.J. Disinfection by-products (DBPs) in drinking water and predictive models for 
their occurrence: A review. Sci. Total Environ. 2004, 321, 21–46. 

10. Abokifa, A.A.; Yang, Y.J.; Lo, C.S.; Biswas, P. Investigating the role of biofilms in trihalomethane formation 
in water distribution systems with a multicomponent model. Water Res. 2016, 104, 208–219. 

11. Gibbs, M.S.; Morgan, N.; Maier, H.R.; Dandy, G.C.; Holmes, M.; Nixon, J.B. Use of artificial neural networks 
for modeling chlorine residuals in water distribution systems. In Proceedings of the International Congress 
on Modeling and Simulation, Townsville, Australia, 14–17 July 2003; Modeling and Simulation Society of 
Australia and New Zealand Inc.: Townsville, Australia, 2003; Volume 2, pp. 789–794. 

12. Rodriguez, M.J.; West, J.R.; Powell, J.; Sérodes, J.B. Application of two approaches to model chlorine 
residuals in Severn Trent Water Ltd. (STW) distribution systems. Water Sci Technol. 1997, 36, 317–324. 

13. Sérodes, J.B.; Rodriguez, M.J.; Ponton, A. Chlorcast (c): A methodology for developing decision-making 
tools for chlorine disinfection control. Environ. Model. Softw. 2001, 16, 53–62. 



Environ. Sci. Proc. 2020, 2, 55 10 of 10 

 

14. Golfinopoulos, S.K.; Nikolaou, A.D. Formation of DBPs in the drinking water of Athens, Greece: A ten-
year study. Glob. Nest J. 2005, 7, 106–118. 

15. Golfinopoulos, S.; Arhonditsis, G. Multiple regression models: A methodology for evaluating trihalo- 
methane concentrations in drinking water from raw water characteristics. Chemosphere 2002, 47, 1007–1018. 

16. Farmaki, E.G.; Samios, S.A.; Thomaidis, N.S.; Golfinopoulos, S.; Efstathiou, C.E.; Lekkas, T.D. Artificial 
neural networks predictive models. A case study: Carbon and bromine concentrations prediction based on 
chlorination time. Glob. Nest J. 2012, 14, 10–17. 

17. Nikolaou, A.D.; Lekkas, T.D.; Golfinopoulos, S.K. Kinetics of the formation and decomposition of 
chlorination by-products in surface waters. Chem. Eng. J. 2004, 100, 139–148. 

18. Zar, J.H. Biostatistical Analysis, 2nd ed.; PrenticeHall: Englewood Cliffs, NJ, USA, 1984. 
19. Draper, N.R.; Smith, H. Applied Regression Analysis; John Wiley: New York, NY, USA, 1981. 
20. Ott, L. An Introduction to Statistical Methods and Data Analysis, 3rd ed.; PWS-Kent Publising Company: 

Boston, MA, USA, 1988. 
21. Uyak, V.; Ozdemir, K.; Toroz, I. Multiple linear regression modeling of disinfection by-products formation 

in Istanbul drinking water reservoirs. Sci. Total Environ. 2007, 378, 269–280. 
22. Tsoukalas, D.; Tsitsifli, S. A Critical Evaluation of Water Safety Plans (WSPs) and HACCP Implementation 

in Water Utilities. Proceedings 2018, 2, 600, doi:10.3390/proceedings2110600. 
23. Tsitsifli, S.; Tsoukalas, D. Water Safety Plans and HACCP implementation in water utilities around the 

world: Benefits, drawbacks and critical success factors. Environ. Sci. Pollut. Res. 2019, doi:10.1007/s11356-
019-07312-2. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


