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Abstract: In this article, an adjustment of the extreme theoretical probability distributions upon  
the sample is proposed, based on the conventional fuzzy linear regression model of Tanaka [1], 
where all the data must be included within the produced fuzzy band. This is achieved by using the 
quintile approach, which relates the observed return period with the theoretical cumulative 
probability. A new contribution of this work is the use of the fuzzified maximum likelihood, as a 
measure of goodness of fit. The model is applied for real data from the Strymonas River, regarding 
the annual maximum flow, and finally, useful conclusions are made. 
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1. Introduction 

Fuzzy logic has proven to be a particularly useful tool in the hands of engineers, and its use in 
recent decades has been widespread in hydrology and hydraulics. Fuzzy linear regression provides 
a functional fuzzy relationship between dependent and independent variables, where uncertainty 
manifests itself in the coefficients of the independent variables. 

Next, the fuzzy linear regression of Tanaka [1] is used. In general, the fuzzy regression analysis 
gives a fuzzy functional relationship between the dependent and independent variables [2,3].  
In contrast to the statistical regression, the fuzzy regression model of Tanaka [1] has no error term, 
while the uncertainty is incorporated into the model with the use of fuzzy numbers [4,5]. The data of 
the fuzzy regression can be either fuzzy or crisp. Usually, the data are rather crisp numbers  
(observed data), and thus, the uncertainty arises from the used fuzzy model, that is, the fuzzy 
coefficients. The inclusion property of the produced fuzzy band, that is, the requirement that all the 
data must be included within the produced fuzzy band, creates the constraints. 

Papadopoulos et al. and Spiliotis et al. [5,6] proposed a fuzzy hybrid frequency factor-based 
method, with the use of fuzzy regression, in order to improve the couple between the theoretical and 
the observed probability distributions. These articles deal with either annual cumulative streamflow 
or precipitation. In this work, the annual maximum flow is studied, and furthermore, the fuzzified 
likelihood is used as an additional measure of suitability. 
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2. Basic Notations and the Proposed Methodology 

2.1. Fundamentals of Fuzzy Sets and Logic 

A fuzzy set A on a universe set X is a mapping , assigning to each element  a 
degree of membership . The membership function A(x) can be also presented as . 

If Α is a fuzzy set, and let any number by the α-cut, and the strong α-cut, 
,the crisp sets are defined, respectively as: 

{ }= ∈ ≥[ ] : ( )A α x X A x α  (1) 

{ }+ = ∈ >[ ] : ( )A α x X A x α (strong α-cut),
 

(2) 

The 0-cut can be defined as follows: 
+ = ∈ >[0] { : ( ) 0}A x X A x , (3) 

In order to have a closed interval containing the boundaries, Hanss [7] proposed the phrase 
worst-case interval W, which is the union of the 0-strongcut and the boundaries. It is worth noting 
that, by using the α-cut concept, we can move from the fuzzy sets to the conventional crisp 
mathematical methodologies. 

A special kind of fuzzy sets is the fuzzy numbers. In this work, fuzzy symmetric triangular 
numbers are used, which are special kinds of fuzzy numbers. The fuzzy symmetric triangular 
numbers have the following membership function: 

( )
 −
 − − ≤ ≤ += 



>
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0,
0

A
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if w x wμ x w

otherwise
w
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in which a is the center and w the spread of the fuzzy number. 
The operation of the usual crisp functions, if the inputs are fuzzy sets, can be extended based on 

the extension principle. In most cases, it is preferable to use α-cuts in the fuzzy analysis [8]. If g is a 
continuous function in the extension principle, the use of α-cuts can be made by determining the α-
cuts of the function f, as follows [9,10]. Then, based on the min intersection, it holds: 
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(5) 

From the theorem of global existence for maxima and minima of functions with many variables, 
it is known that, if the domain of a real function is closed and bounded and the real function is 
continuous, then the function will have its absolute minimum and maximum values at some points 
in the domain [8,11]. Based on this theorem, it is evident that the α-cut for any real continuous 
function with real variables in this domain can be determined, given that the inputs are fuzzy 
triangular numbers [8]. 

2.2. Fuzzy Linear Regression 

The fuzzy linear regression model proposed by Tanaka [1] has the following form: 

0 1 1 ... ....j j i ij n njY A Ax Ax A x= + + + +    with j =1,…, m, i = 1,…, n, (6)

→: [0,1]A X ∈x X
≤ ≤0 ( ) 1A x ( )Aμ x

∈[0,1]a [ ]A α +[ ]A α
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where n is the number of independent variables xij (here only n =1 which is related with the observed 

return period), M is the number of data,  is the fuzzy predicted value of the dependent variable 
considering the jth data (here, the maximum annual flow). 

According to Tanaka [1], all the data must be included within the produced fuzzy band 
(inclusion principle). Based on the extension principle and the concept of α-cuts, the inclusion 
principle is equivalent to (by using fuzzy symmetrical triangular numbers as coefficients): 

n n n

i i
i 0 i 0 i 0

a (1 ) a (1 ) , 1,...,
n

ij i ij j ij i ij
i=0

x h c x y x h c x j M
= = =

− − ≤ ≤ + − =    , (7)

where ai is the center and ci the spread of the fuzzy number which represents the fuzzy coefficient. 
Finally, the sum of the produced semi-widths for the produced dependent variable for all the 

data is proposed as an objective function: 

M n

0 i ij
j=1 i=1

J = min Mc + c x
 
 
 

 , (8)

In other words, the problem of fuzzy linear regression is reduced to a linear programming 
problem [1,4]. 

2.3. Observed Probabilities 

Let a historical sample. The rank order method involves ordering the data from the largest 
hydrological value to the smallest hydrological value, assigning a rank of 1 to the largest value and a 
rank of N to the smallest value. An empirical distribution is used to compute the plotting position 
probabilities as follows [12]: 

( )≥ =
+

mP Q q
Ν 1

, (9)

Therefore, the cumulative probability or non-exceedance probability can be determined as follows: 

( )< = −
+

mP Q q
Ν

1
1

, (10)

The concept of the observed probability is critical, since the suitability of the used theoretical 
probability function is based on the comparison between the observed and the theoretical  
probability values. 

2.4. Generalized Extreme Value (GEV) Distribution 

The probability density function of the GEV distribution is of the form [13]: 
−− −−−= −

1/[1 ( )]1/ 11( ) [1 ( )]
x u kkk αx uf x k e

α α , (11)

The GEV distribution function is as follows [14]: 

−= − − 1/( ) exp{ [1 ( )] }kx uF x k
α

, (12)

The distribution function of x given by Equation (12) can be written in the inverse form [13]: 

= + − −[1 ( log ) ]kαx u F
k

, (13)

By substituting where T is the return period, the T-year quantile estimate of the 
annual maximum flow, , is obtained as follows: 

jY

= −1 1 /F T
ˆ

Tq
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= + − − − ˆˆ 1ˆ [1 { log(1 )} ]ˆ
k

T

αq u
Tk

 , (14)

Csis the skewness coefficient, which can be estimated as: 

′
3S

aC
s

 , (15)

Furthermore, a’ is the asymmetry of a sample, of which the unbiased estimation is: 

=

′ = −
− −  3

1
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( 1)( 2)

N

j
j

Na x x
N N

, (16)

where N is the magnitude of the historical sample. Approximate relationships between the value of 
k and the skewness coefficient CS, obtained through regression analysis, are given in pages 225, 226 
and 227 (7.1.12, 7.1.13 and 7.1.14) in [13]. This approach was adopted by the authors. 

In this article, the term  is considered as a crisp number, while the terms  and 

 are considered as fuzzy numbers. Therefore, the following fuzzy regression model is modulated: 

= +

= − − −

0 1

ˆ1: [1 { log(1 )} ]

Tj j

k
j

j

q a a x

where x
T

  

, (17)

in which are the fuzzified dependent variable, the constant term and the coefficient of the 
considered independent variable. It should be clarified that the independent variables, as well as all 
the observed values, are crisp numbers. The method does not require any transformation of the crisp 
data to fuzzy data. 

2.5. The Extreme Value Type I EV1(2) Distribution 

The probability density function of the EV1(2) distribution is given by the following  
equation [13]: 

−−−
= − −

( )1( ) exp[ ( ) ]
x β
α

x β
f x e

α α
, (18)

The variable x takes values in the range . The distribution function of x is given by 
the following equation: 

−−
= −

( )
( ) exp[ ]

x β
αF x e , (19)

The EV1(2) distribution is a special case of the GEV distribution, discussed in Section 2.4, in 
which the shape parameter k is equal to zero. The distribution function of EV1(2) (Equation (14)) can 
be obtained in the inverse form as follows [13]: 

= − ⋅ −log( log )x β α F , (20)

The T-year quantile is calculated by substituting , where T is the return period, to 
obtainthe following equation: 

= − ⋅ − −ˆ垐 log[ log(1 1 / )]Tq β α T , (21)

More specifically, the term  is considered as a crisp number, while the terms 

and  are considered as fuzzy numbers. Inthe same way, by using the fuzzy linear regression, 
the following fuzzy relation is determined, with the aim of fuzzy linear regression model: 

− − − ˆ1[1 { log(1 )} ]k

T
û

ˆ
ˆ
α
k
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= +

= − − −
0 1

: log[ log(1 1 / )]
T jj

j j

q a a x

where x T

  
, (22)

2.6. Measures of Suitability 

Since a fuzzy approach is dealt, the usual statistical test cannot be used to check the suitability 
of the proposed model. The first model of suitability, which can be used, is the produced uncertainty 
of the produced fuzzy band, J (Equation (8)): 

=

+ 0 1
1

M

j
j

Mc c x , (23)

where represent the number of data, the semi-width of the constant term and the semi- 
width of the independent variable coefficient, respectively. 

In this article, the use of the likelihood is used as a measure of suitability (and not to determine the 
parameters). Since the parameters are fuzzy, then the fuzzified likelihood is constructed by determining 
the borders of the α-cut for the likelihood, for several representative values of the α-cut, as follows: 
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(24)

To summarize the proposed methodology, the following steps are adopted: (1) modulating the 
independent and dependent variables based on the Weibull 1939 empirical distribution and the 
examined theoretical probability distribution. (2) Applying fuzzy regression; (3) the magnitude of the 
produced fuzzy band and the fuzzfied likelihoods are used as suitability measures. 

3. Case Study 

The case under investigation is a northern region (Marino Pole) of the Strymonas River (Figure 1). 
The Strymonas (Struma) River is one of the largest rivers in theBalkan Peninsula in terms of length, 
since it crosses the Bulgarian and Greek borders. It rises in the Vitosha Mountain in Bulgaria, and has 
its outlet in the Aegean Sea. Its drainage area is 17,330 km2, of which 10,797 km2 is in Bulgaria, 6295 km2 
is in Greece, and the rest is in North Macedonia. In Greece, it is the main waterway feeding and exiting 
from Lake Kerkini, a significant center for migratory wildfowl. The river’s length is 415 km (of which 
290 km is in Bulgaria), making it the country’s fifth-longest and one of the longest rivers that run solely 
in the interior of the Balkans. Τhe location of the analysis is the Marino Pole, which is located in Bulgaria. 

 
Figure 1. The Basin of Strymonas River in Bulgaria and the location of the case study. 

0 1, ,M c c
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Firstly, the GEV theoretical probability distribution is examined. Since the fuzzy regression 
enables the determination of two parameters, the third parameter is estimated at the beginning of the 
method, based on the moment method. Hence, based on the sample, the skewness coefficient is 

 and finally, . Subsequently, the fuzzy linear regression of Tanaka with 
the worst-case interval W is applied, which leads to the following fuzzy curve (Figure 2): 

= + ⋅ − − − ˆ1(145.7,27.8) (1128.6,43.3) [1 { log(1 )} ]k
Tj

j

q
T

  (25)

Based on the solution, the sum of the produced semi-widths (J) is: 

=
3m971.7549J s  (26)

 
Figure 2. Graphical representation of the fuzzy linear regression for the Generalized Extreme Value 
(GEV) distribution. 

Another interesting point of view is that, as can be seen from Figure 2, all the (crisp)observations 
are included within the produced fuzzy band a property, which is not satisfied according to the 
conventional methodologies. 

Secondly, the extreme value type I [EV1(2)] theoretical distribution is examined. The fuzzy linear 
regression was applied (Tanaka et al. 1987) based on the aforementioned quantile approach, which 
leads to the following fuzzy curve: 

= + ⋅ − − −(158.62,27.01) (323.18,20.1) { log[ log(1 1 / )]}T jj
q T  (27)

while the sum of the produced semi-widths is: 

=
3m1060.4J s  (28)

Both fuzzy curves are depicted in Figures 2 and 3. Based on the magnitude of the produced 
fuzzy band (that is, the value of the objective function), the GEV theoretical probability distribution 
is preferred. An interesting point is that every fuzzy linear regression problem based on the Tanaka 
methodology has a solution. The critical point is the magnitude of the produced fuzzy band. From 
Figures 2 and 3, it is evident that the fuzzy band can be characterized as functional. Another 
important point of view is that all the data must be included within the produced fuzzy band, and 
hence all the empirical probabilities are within the produced fuzzy band. 

= 0.406632SC =ˆ 0.157612k
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Figure 3. Graphical representation of the fuzzy linear regression for the extreme value type I [EV1(2)] 
distribution. 

As mentionedbefore, the second measure of suitability is the produced fuzzy likelihood g,  
which in its crisp expression, is a continuous function. Based on the extension principle  
(Equation (24)), the fuzzified likelihood is built by determining several α-cuts. The fuzzified 
likelihoods for both examined theoretical probability distributions are presented in Figure 4. The two 
likelihoods have the shape of fuzzy numbers. Even if the comparison between two fuzzy numbers is 
an ill constructed problem, by applying several widely used measures, we conclude that the fuzzy 
likelihood of GEV is greater than the fuzzy likelihood of EV1(2) and hence the GEV is preferred 
according to this criterion. We highlight that the fuzzified likelihood is determined based on the fuzzy 
regression, or in other words, the fuzzified likelihood is used as a suitability measure, and not in 
order to determine the parameters of the probability distribution. 

 
Figure 4. The fuzzified likelihoods for GEV and EV1(2) theoretical probability distributions. 

4. Conclusions 

In order to achieve the couple between the examined extreme theoretical probability distribution 
and the sample, a hybrid fuzzy regression based approach is developed. The fuzzy regression model 
is formulated according to the quantile approach, which relates the observed return period with the 
theoretical cumulative probability. The problem of fuzzy linear regression for crisp data and fuzzy 
triangular numbers as coefficients concludes to an equivalent linear programming problem. 

Two theoretical probability distributions were applied to study the annual maximum river in 
Strymonas River: the GEV and the EV1(2). To evaluate the proposed approach, two measures of 
suitability are proposed. The first one is the magnitude of the produced fuzzy bands, which is the 
objective function regarding the equivalent optimization problem. The second measure is the 
fuzzified likelihood, which is built according to the extension principle and the solution of the fuzzy 
regression. It is concluded that, in both cases, a functional uncertainty appears; therefore, the use of 
the fuzzified theoretical probability function is successful and can be further utilized. Secondly, by 
comparing both objective functions and the fuzzified likelihood, the use of the fuzzified GEV must 
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be preferred. Hence, the proposed measure of suitability can be used, in order to select the fuzzified 
theoretical probability function. 
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