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Abstract: In recent years, use of the stochastic model has been growing due to the high complexity
and dynamics of the atmosphere, especially the rainfall process. Various concepts have been applied
to rainfall modeling, ranging from simplistic approaches to more complex models. It is important
to understand different stochastic rainfall modeling approaches, as well as their advantages and
limitations. This paper determines the development of the latest stochastic rainfall models in the
Asia region, where different concepts of stochastic rainfall models were highlighted. It reviews the
different methodologies used, including rainfall forecasting, spatio-temporal analysis, and extreme
event. We select 30 articles from 1571 literature published between 2013–2022 from the Scopus
database. The results show that the stochastic models often used in the literature consist of Markov
chain, weather generator, probability distribution, ARIMA, and the Bayesian model. In the recent
development in Asia, stochastic models in rainfall modeling research are widely used to generate the
occurrence and amount of rainfall data, statistical downscaling, future rainfall trends, and estimation
of extreme values. The difference in spatio-temporal, climate conditions, and the parameters model
can cause the performance of each model to be different.

Keywords: stochastics model; rainfall; systematics review; PRISMA; Asia

1. Introduction

The development of a climate model is an attempt to simplify the understanding of the
climate system. Stochastic models are now an important topic in climate research, and are
starting to be widely used in more comprehensive climate predictions. Stochastic methods
for numerical weather and climate predictions allow for an accurate representation of
uncertainty, reduced bias, and improved representation of long-term climate variability.
Research related to systematic reviews of stochastic climate models, especially rainfall
models, is not yet available for the Asia region. Assessing the accuracy of the output
from these models will provide an overview of the robustness of the stochastic model in
representing the rainfall model.

2. Methodology

The authors used the preferred reporting items for systematic reviews and meta-
analyses (PRISMA) approach to search and select the literature samples. PRISMA has 3
steps [1]: (1) identification, (2) screening, and (3) included. This study mainly focused on
the stochastic climate model in Asian countries. After the screening process, we chose
30 articles representing 14 different journals, including the Journal of Hydrology (23%),
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the International Journal of Climatology (13%), and Theoretical and Applied Climatology
(13%). The flow chart is shown in Figure 1.
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3. Results

Several studies mostly used stochastic rainfall models for downscaling rainfall data [2–5]
and generating the occurrence and amount of rainfall data [6–10]. Regression models
and stochastic weather generators are the most widely used statistical-downscaling meth-
ods [3,4]. The Markov chain is the most popular technique to generate rain occurrence
because it is easy and simple [5,6,8,9]. Meanwhile, a probability distribution generates
rainfall amounts [2,6,9].

3.1. Markov Chain

The Markov chain defines the state of a particular day as a “wet” or “dry” day and
describes the relationship between today’s state and the previous day’s. The use of previous
rainfall data was quite varied, such as 1 day [2,6], 0–3 days [8], and 0–5 days before [9]. Most
of the Markov chain models mentioned in the literature are first-order models. Although
the first-order is satisfactory, the most prolonged simulated dry spell results were slightly
shorter than the observed results, which may be due to the short-term memory of the
first-order Markov model [6]. The solution is to use a Markov chain of order two or higher
to overcome this limitation. In tropical areas such as Malaysia, the second-order Markov
chain has the most optimum value for estimating monthly rainfall, while the third-order is
best for estimating annual rainfall [9]. Meanwhile, in sub-tropical areas, which have four
seasons, the prediction of daily rainfall in summer is better than in other seasons [8].

Along with the development of stochastic model research, the use of Markov chain
models has been modified to improve their accuracy, such as modified Markov models
(MMM) [2], the hidden Markov model (HMM) [11], non-hidden homogeneous Markov
models (NHMM) [12], decadal and hierarchical Markov chain (DHMC) [13], and the
stochastic daily rainfall model—Markov chain rainfall event model (SDRM-MCRE) [5].
MMM includes atmospheric predictors that predict the effects of changing climatic con-
ditions and other variables to represent specific rainfall characteristics. HMM contains
hidden and unknown parameters (event). Compared with the HMM, the NHMM model
introduces non-homogeneity by allowing for different components in the transition matrix
or the emission matrix, depending on other relevant variables. SDRM-MCRE can compre-
hensively maintain the rainfall characteristics of the rainfall time series (e.g., monthly mean
rainfall and extreme rainfall percentiles) and rainfall event characteristics (e.g., different
classes of rainfall duration, rainfall depth, rainfall intensity, and drought).
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3.2. Probability Distribution

Parametric probabilities, usually used to generate rainfall amounts, include one-
parameter distributions, such as exponential [6,9], two-parameter distributions, such as
gamma [2,5,6,9,13], Weibull [6,14], normal/Gaussian [2,12], log-normal [9], and the distri-
bution of three parameters, such as mixed exponential [6,9,14], hybrid exponential [6,9,11],
and normal skewed [6,9]. Meanwhile, K-nearest neighbor is commonly used in nonpara-
metric probabilities [10].

Most studies state that distribution with three parameters shows better results than
other models [6,14]. Three-parameter distributions, especially the mixed exponential
distribution, perform better in reproducing the daily rainfall variance in subtropical regions
such as China. In contrast, the skewed normal and Weibull distributions better simulate
extreme rainfall characteristics at the >95th percentile [6]. In the tropics, mixed exponential
(three parameters) is very suitable for estimating the average and maximum values on an
hourly scale quite well, compared with Weibull (two parameters) [14].

Spatiotemporal differences also affect the application of the distribution model, so that
not all three-parameter distributions are always better. For example, in the Kelantan water-
shed, Malaysia, the mixed exponential distribution was not chosen as the best distribution.
Statistical tests proved no significant difference between the performance of one, two, and
three-parameter distributions [9]. At extreme values, the exponential (one parameter) and
log-normal (two parameters) distributions perform better than other distributions [9], while
the double gamma distribution (two parameters) can capture extreme rainfall as well as
average rainfall at the same time [5].

3.3. Stochastics Weather Generator

Different types of weather generators use two approaches, namely the Markov
chain [6,7,15] and spell length [3,7]. The Markov chain approaches, such as WGEN,
CLIMGEN, CLIGEN, WeaGETS, and MulGETS, and spell length approaches, such as
LARS-WG, are the most widely used. From several studies, models based on the spell
length approach, such as LARS-WG, have worse performance than Markov chain-based
models, such as WeaGETS [7] and SDSM, a hybrid model that combines a regression model
and stochastic weather generators [3].

Chen and Brissette [7] compared five weather stochastics to generate rainfall data
in China’s Loss Plateau. The WGEN, CLIMGEN, and CLIGEN use first-order 2-state
Markov chains to generate precipitation events. In calculating the amount of rainfall,
WGEN uses the gamma, CLIMGEN uses the Weibull, while CLIMGEN uses the skewed
normal. WeaGETS uses a combination of third-order Markov chains and a mixed expo-
nential distribution. For simulating daily rainfall amounts, weather generators based on
three-parameter (CLIGEN and WeaGETS) generally perform better than two-parameter
distributions (WGEN and CLIMGEN), especially in simulating extreme rainfall.

Stochastics weather generators commonly used for multisite are MSRG [16], Mul-
GETS [17], and the new multivariate-multisite WG [18]. MSRG can simultaneously simu-
late the spatial dependence of the occurrence and amount of multisite daily rainfall using
the SSRN method. MSRG also has the potential to be applied in relatively large basins
or areas [16]. MulGETS is an extension of SSWG, created by driving a single site model
with temporally dependent and spatially correlated random numbers. Ahn [18] combined
annual and daily weather generators to overcome the limited variability of low-frequency
climate variables and generate extreme rainfall events.

The STREAP WG model for remote sensing data such as radar [19] was used to
measure the sub-pixel variability of the radar from extreme rainfall to downscaling the
radar rainfall recorded at a particular pixel. Peleg and Morin [20] developed a slightly
different WG based on a rainfall field analysis derived from weather radar data, in addition
to synoptic parameters that explicitly represented convective rain cell elements that are
known to have a significant impact on the catchment hydrological response. HiReS-WG is
used to periodically generate rain fields with a high spatial and temporal resolution.
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3.4. ARIMA

ARIMA is a typical statistical analysis model that uses time-series data to predict
future trends. The ARIMA model approach can outperform most other statistical models,
such as in hydrological time series. The relative advantage of the ARIMA model is due to
its statistical nature, as well as the well-known methodology in building the model [21].
The ARIMA model is a combined model between autoregressive (AR) and moving average
(MA) as well as an order-d differencing process for data at seasonal and non-seasonal levels,
and is included in the linear forecasting group [8]. The ARIMA model is a model that has
been widely applied in rainfall data analysis for various purposes, especially in drought
analysis [21,22]. The ARIMA model is a time series forecasting approach.

3.5. Bayesian

The Bayesian approach is used in many hydrological studies, such as uncertainty
quantification, water quality modeling, and hydroclimatic analysis. One of the studies was
carried out by developing a Bayesian model to evaluate changes in the maximum thickness
of seasonally frozen ground (MTSFG) [23]. The application of this Bayesian method has
been used to estimate snow depth and soil organic carbon content in permafrost areas
using the Markov chain Monte Carlo (MCMC) sampling method [24,25].

Currently, the use of the Bayesian model has been modified to improve its accuracy
in rainfall analysis. Some of those mentioned in the literature are the Gaussian copula
model, the Bernoulli-Gamma hierarchical Bayesian model, and the Bayesian-time varying
downscaling model (TVDM). The Gaussian copula model has been optimalisationto explore
future extreme rainfall changes [26]. In addition, this Gaussian copula can be used as a new
scheme to correct for biases in the spatial correlation as well as the marginal distribution
of the simulated rainfall. The Bernoulli-Gamma hierarchical Bayesian model was used to
simulate rainfall to build a hierarchical Bayesian mixture model for daily rainfall forecasts,
using endogenous and external information [27]. The proposed Bayesian-time varying
downscaling model (TVDM) is used to derive monthly rainfall in India using the large-scale
output of general circulation models (GCM). The methodology proposed by the TVDM
was developed using a Bayesian approach in updating the parameters previously adopted
in the Bayesian dynamic linear model.

3.6. Strengths and Limitation Model

The Markov chain has the advantages of being easy to use, able to simulate rainfall in
the station network while maintaining influential spatial attributes, maintaining rainfall
characteristics from the rainfall time series, having great potential to be used for flood and
drought risk assessment, and being able to simulate monthly and annual rainfall events.
The ARIMA model in the literature is mainly carried out in dry areas (Pakistan, Saudi
Arabia, and Iraq). This is because ARIMA can forecast drought on different timescales
and outperform most other statistical models. The model’s weakness is that it cannot
predict for long periods. The WG model is excellent for generating data in small areas.
The Bayesian model found in this literature review contains pure Bayesian but also a
combination model, such as TVDM and the Bayesian NHMC. WGs are appropriate for
climate change projections because their time-varying components allow for variations
in transition probabilities or emission probabilities depending on external factors. In the
k-nearest neighbor resampling, little effort is needed to estimate the parameter. This model can
be an excellent alternative to simulating multisite pre-precipitation events. The strengths
and limitations of the stochastic model is shown in Table 1.
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Table 1. Strengths and limitations of the stochastic model.

Model Strengths Limitations

Markov Chain

• good in simulating monthly and annual
rainfall events

• suitable for a comprehensive tropical
monsoon climate

• maintains rainfall characteristics from time series
and rainfall events

• suitable for flood and drought risk assessment

• not accurate enough to run on areas with
higher spatial and time scales.

• GCM selection is still influenced by the
availability of atmospheric variables on a
daily time scale

• The model tends to ignore variations in
low-frequency rainfall

Weather Generator

• suitable for a local and heterogeneous area
• suitable for long-term approach (including

climate change)
• has little average difference and is capable of

capturing daily rainfall
• able to simulate extreme precipitation
• suitable in semi-arid areas.

• The model does not automatically
determine the best limits, biases, and
variances.

• The selection of predictors is still poor
• models often tend to underestimate

extreme data

ARIMA

• capable of forecasting drought at different
time scales.

• Widely used in arid areas
• ARIMA model offers various advantages over

other approaches (such as moving averages,
exponential smoothing, and neural networks,
including predicting and more information about
time-related changes)

• This model shows significant limitations for
understanding the time series of generated
rainfall

Bayesian

• can combine multiple bias corrections
simultaneously

• Can project rainfall intensity with the effects of
climate change

• effective for limited observations in cold areas

• daily rainfall forecasts are still a challenge

Probability
Distribution

• Generate good correlations
• not much effort is required to estimate parameters
• suitable for simulating multi-site

pre-precipitation events

4. Conclusions

Research related to stochastic models on rainfall modeling in the Asia region is a very
complex study. The variety of scopes, approaches, focuses, methodologies, and limitations
used in rainfall modeling hinders a common understanding of the stochastic models used.
The results of the study indicate that the research objectives of using stochastic models
in rainfall modeling research include climate data generation, statistical downscaling,
predicting future rainfall trends, the estimation of extreme values, and so on. Of these
purposes, the stochastic model is the most widely used for climate data generation and
statistical downscaling. The rainfall data generator is used to estimate the occurrence and
amount of rainfall. Various stochastic models that are often used in the literature consist
of Markov chain, weather generator, probability distribution, ARIMA, and the Bayesian
model. The performance of these stochastic models will be different for each region in Asia.
The spatiotemporal differences, the study area, and the use of parameters can be the cause
of the difference in the results of each model. The stochastic model is easy and good to use,
and the temporal, spatial scale, and type of model can be adapted to the research objectives,
where the more combinations of models, the better the results. Therefore, in general, the
stochastic model is very flexible depending on user needs.
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