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Abstract: Modelling the dispersion of atmospheric pollutants plays an important role in regulatory
and epidemiological settings. Although the majority of modelling concepts were developed in the
1980s, a significant amount of optimisation and refinement of dispersion models has occurred since
this time. In addition, some completely novel models such as computational fluid dynamics have
emerged. Furthermore, next generation models are continually improving the accuracies of the
results obtained. This review provides a non-technical outline of the mechanisms of atmospheric
pollutant dispersion modelling and discusses common model types and their applications.

Keywords: Gaussian model; Eulerian model; computational fluid dynamic (CFD) model; Lagrangian
model

1. Introduction

With the well-established link between various forms of air pollution and detrimental
health conditions including respiratory conditions [1–3], cardiovascular disease [4–6],
cancer [7,8] and other systemic conditions [9,10], the importance of maintaining air quality
has never been more accentuated. Particularly in light of the continuing decrease in ambient
air quality in regions such as East Asia [11], the modelling of atmospheric pollutants
plays a vitally important role in guiding regulatory decisions relating to existing and
future air quality [12–14]. In addition to providing the ability to predict (i.e., forecast)
pollutant levels at a given timepoint [15], pollutant modelling allows for specific pollution
events to be traced back to their most likely origin [16]. Amongst the numerous potential
uses, this is particularly important for regulatory decision making or planning [12,17,18],
epidemiological studies [19,20] and forensic purposes (i.e., identification of the polluter(s)
responsible for an observed reduction in air quality) [16,21,22]. Air quality monitoring
also plays in important role in allowing industries to demonstrate their compliance with
national air quality standards [23].

The choice of pollutant dispersion model plays a key factor in the accuracy of the
results obtained [24]. The available modelling techniques were reviewed by Daly and
Zannetti [25] over a decade ago, and more recently by Barratt [26] and Colls and Tiwary [27].
In addition, several recent reviews have focussed on the modelling techniques specifically
associated with traffic-derived atmospheric pollution [28,29]. However, the technical jargon
associated with such reviews may render them unintelligible for the layperson. This review
aims to provide a simple introduction to atmospheric pollutant dispersion modelling
in terminology accessible to the uninitiated and outline the currently available models.
Particular emphasis is given to models and applications reported over the past five years.
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2. The Basics of Dispersion Modelling
2.1. Data Input

The basic inputs of a pollutant dispersion model include the emission source(s) and
pollutant emission levels, meteorological conditions and any changes, topography and any
chemical processes (if applicable). A range of possible inputs is given in Table 1.

Table 1. Some possible data inputs for a dispersion model.

Emission Characteristics Source Characteristics Location Characteristics Meteorological Characteristics

Pollutants Source types (e.g., point, line,
area, volume) Location (e.g., urban vs. rural) Temperature

Pollutant characteristics Source dimensions (if
applicable) Terrain (simple vs. complex) Wind speed

Distribution of source(s) Volume emission rates Surface roughness (z0) Wind direction

Emission rates Temperature Interfaces of land & water
(if any)

Atmospheric
stability/turbulence

Moisture content Existing (background)
pollutant levels

Solar radiation (particularly
important for photochemical

modelling)

Presence of buildings or other
infrastructure Cloud cover

Moisture

2.2. Data Processing—The “Black Box”

For many, the model comprises a “black box” wherein the necessary data is entered,
the start button is pressed and the outputs consequently analysed. Indeed, with the rising
complexity of the models available, it would be impractical for most users to spend the time
necessary to gain a complete understanding of the operations of the model they are using.

At the most basic level, atmospheric models comprise one or more mathematical
formulae that take into account the input parameters to calculate the concentrations of one
or more pollutants at specific locations at any point downwind or downtime. Clearly, the
most accurate results would be gained from modelling the trajectory of every pollutant
molecule over the simulation period. However, this would require an inordinate amount
of processing power. Rather, models must simulate pollutants as a number of discrete
components, typically taking either a fixed grid (Eulerian) or trajectory approach. With the
fixed grid approach, the area in question is divided into a grid; the air quality within each
grid is calculated at each time point based on its previous air quality and that of adjacent
grids, taking into account the prevailing meteorological conditions [23]. In the simpler
trajectory approach, the emissions are chunked into either a single block or a number of
“puffs”, each comprising a potentially variable (albeit known) amount of pollutant [30].
The directional and temporal spread of each puff is then simulated.

In order to do this, processing power is divided among a number of modules, each
connected to the core “dispersion” module. Each module simulates a specific aspect
within the simulation, such as the identity and concentrations of any pollutants present,
any chemical reactions, effects of buildings or terrain, effects of meteorology, plume rise,
and deposition of pollutants. Other modules may be added onto a model. For example,
the module PRIME (Plume RIse Model Enhancements) is included in many regulatory
dispersion models (e.g., ISC, AERMOD, CALPUFF, TAPM, AUSPLUME), allowing for the
prediction of turbulent flow and mixing induced by buildings.

Some models (“reactive models”) also allow for chemical reactions between compo-
nents to be simulated. This allows for more realistic prediction of the true atmospheric
quality, albeit at a higher processor cost. Concentrations of compounds such as CO and SO2
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are often forecast using non-reactive models due to their relative inertness, while the more
chemically reactive species NO, NO2 and O3 necessitate the use of reactive models [23].

2.3. Data Output

Although outputs will depend on the specific application to which the model is
applied, the most important output is typically the predicted concentrations of specific
pollutants at given point(s) surrounding the emission source, at specified points in time.

Before being released to the general public, the outputs of a new pollutant dispersion
model will be calibrated against the true pollutant levels across a number of sites, obtained
from air quality monitoring stations. Particularly with the rise of cheaper air quality
monitoring stations which could be implemented more widely [31,32], the validation of
dispersion models, both pre- and post-release, is expected to only increase in the future.

2.4. Data Analysis

From the data output, an assessment of likely environmental or health effects can then
be made. Despite its seeming simplicity, accurate interpretation of the model output is of
the utmost concern. If the model results are not interpreted correctly, then there is little
point in running the model in the first place.

2.5. Simulation Timeframe

Models can either be short-term (hours to days) or long-term (months to years) [23,33].
Short-term modelling is typically used for predicting pollutant levels under “worst case”
scenarios. On the other hand, long-term modelling is often used for epidemiological and
atmospheric deposition studies [23].

3. Box Models
3.1. Introduction

Box modelling is one of the earliest and simplest forms of pollutant dispersion mod-
elling. Traditionally, box models found particular use in situations requiring the simulation
of chemical interactions between pollutants, as the simplified spatial and temporal disper-
sion allowed for a greater focus on the chemical aspects.

In a box model, the airshed is assumed to be a simple box of set dimensions, with all
emissions released into the box. Once released, the emissions are assumed to be evenly
distributed throughout the box. As expected, the accuracy of such a model is quite limited,
as shown in comparative studies [34]. The main advantage of the box model is its simplicity,
thus requiring very little processing power and allowing for very fast simulation runtimes.
In addition, very little input data are required.

3.2. Examples of Simple Box Models
EKMA

The model EKMA (Empirical Kinematic Modelling Approach) was used as an early
method of assessing the likelihood of photochemical smog formation in urban settings [35].
In this model, the concentrations of VOCs and NOx were assumed to remain constant
from their values measured in the early morning. EKMA is in fact a type of Lagrangian
simulation, albeit limited to a box model system [36,37]. Despite its age, EKMA is still
occasionally used for the study of ozone-NOx-VOCs relationships in simple settings [38–40].

3.3. Uses

Given their overt simplicity, box models are not commonly used in contemporary reg-
ulatory settings except for preliminary assessment purposes [41]. However, they do retain
a place in pollutant dispersion modelling, particularly in small anthropogenic enclosed
spaces. For example, Lin, et al. [42] applied a box model to investigate the disappearance of
formaldehyde from indoor air spaces via photodegradation. Given the relatively small air
spaces indoors coupled with the frequent lack of ventilation to the outdoor environment,
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the use of a box model is quite appropriate in such circumstances. Nevertheless, more
complicated models have also been applied to the indoor environment [43].

Modified versions of the box model, such as a two-box model, have been utilised in
modelling photochemical pollutant levels in street canyons (i.e., a street enclosed by tall
buildings on each side) [44,45], amongst other uses [46]. Many other models designed
specifically for street canyons are based off the box model, albeit typically modelling each
street as an individual box. Examples include the STREET and STREET-BOX models [47,48].

4. Eulerian Models
4.1. Introduction

Eulerian models take a strictly mathematical approach to pollution modelling. The
area of study is divided into a number of grid cells, both horizontally and vertically, and the
average pollutant concentration within each cell is calculated at each time point. Eulerian
dispersion modelling was introduced by Reynolds, et al. [49]. Although initially used for
modelling time periods of only a few days per simulation, more recent versions may be
used for longer periods of time.

As Eulerian models are based on the average grid concentrations rather than following
an entire plume, they easily account for removal of the constituent particles through
deposition or chemical reactions [50].

4.2. Examples
4.2.1. TAPM

The Air Pollution Model (TAPM), developed by CSIRO [51], is unusual for a dispersion
model in that it can use either a Eulerian grid or Lagrangian particle model to calculate
dispersion [52]. The latter is considered to be more accurate at locations close to the emission
source. Another remarkable aspect is its ability to extract meteorological conditions from
synoptic charts (past, present or forecast). Surface measurements can also be incorporated.

TAPM functions particularly well in complex situations, such as locations with a sea
breeze or complex terrain [53]. The incorporated prognostic meteorological model has also
been used to provide meteorological input data for other dispersion models [54,55]. As
expected for a mathematical-based simulation, TAPM is quite computationally intensive.

Recent applications of TAPM include use in a complex, mountainous terrain [53],
modelling of heavy metal deposition around a copper smelter [56] and evaluation of health
risks resulting from VOC emissions from municipal waste [57].

4.2.2. Variable K-Theory Model

A Eulerian Variable K-Theory model has been found to provide the highest accuracy
compared to box, Gaussian plume and Lagrangian models, when simulating NO2 and SO2
concentrations across 17 sites [34].

5. Gaussian Models
5.1. Introduction

Based off the assumption that plume spread is due to the diffusion of the constituent
pollutants, Gaussian models take the pollutant concentrations to follow a normal (Gaus-
sian) distribution in both the horizontal and vertical aspects [23], as determined through
experimental measurements of plume spread [58]. These models have been in regulatory
use in the USA for almost 60 years [23]. Gaussian plume models assume the pollutants
are emitted at a continuous rate, modelling the pollutants as a single, continuous plume
(Figure 1). Gaussian plumes expand in two dimension over time (y and z). Gaussian plume
models require the following assumptions: the emission and meteorological conditions
must remain constant, no chemical transformations occur, and wind speeds always equal
or exceed 1 m s−1 [23].
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Inputs include factors such as the pollutant release rate, release height, wind speed
(at the reference height; often the height of emissions release), mixing/inversion height,
and the horizontal and vertical dispersion factors. In addition, rising or sinking of the
plume may be modelled. When the plume reaches the ground or the upper boundary
layer of air, it is assumed to reflect quantitatively from these surfaces. Over time, this
may lead to the false appearance of pollutants accumulating at ground level, which can be
accounted for in the model [23]. Further detail surrounding the mathematical calculations
underlying Gaussian models is presented by Godish, et al. [23], hence will not be discussed
in detail here.

5.2. Gaussian Plume Models
5.2.1. AEOLIUSF

AEOLIUSF (Assessing the Environmental Of Locations In Urban Streets Full version)
is designed for modelling dispersion in urban street canyons [26,59]. Compared to other
street models, AEOLIUS/AEOLIUSF is not as commonly used in contemporary settings.
Its accuracy is middle-of-the-range, being higher than STREET models but lower than SEUS
models [24].

5.2.2. AERMOD

AERMOD superseded the ISC model as the preferred Gaussian plume model of the
US EPA [Environmental Protection Agency [EPA] [60]. From the meteorological conditions,
terrain and upper atmospheric conditions entered, a single wind field is calculated and
used in the simulation, while the terrain, elevation, surface roughness and land use is
used to calculate factors such as the turbulence, stability class and Monin–Obukhov length
(a continuous measure of near-surface atmospheric stability) [25]. AERMOD is suitable
for ground or elevated sources, and both simple and complex terrain [60]. AERMOD is
unsuitable for modelling when the wind speed is zero [61].

Contemporary applications of AERMOD include assessing complex industrial emis-
sions [62], modelling emissions from cement factories [63,64] and gas-fired power plants [65],
and predicting near-road pollutant levels [66]. In particular, pollutant sources surrounded
by complex terrain are often modelled via AERMOD [67].

5.2.3. AUSPLUME

This model is often used in Australia and New Zealand. Its level of detail is believed to
be a little lower than AERMOD; however, AUSPLUME can be used in modelling situations
where the wind speed is zero [61].
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Recent applications of this model include mapping the dispersion of radon released
from a Romanian uranium mine [68] and modelling odour dispersion from rubber factories
in Malaysia [69].

5.2.4. CALINE3

CALINE is a modified Gaussian plume model, where the emission source is a line
rather than a point [70]. Its main use is in modelling pollutant dispersion from roads; the
road geometry can be varied rather than being restricted to a straight line. CALINE3 re-
mains an EPA-recommended Gaussian line model [60], while the updated CALINE4 model
is also used in some contemporary applications [71]. CALINE3 is designed for relatively
simple terrain and forms the basis of models such as CAL3QHC and CAL3QHCR [60].

Ref [71] used CALINE4, combined with ISCST3, to predict NO2 and PM10 concentra-
tions along a road line source.

5.2.5. CAL3QHC and CAL3QHCR

Both models are based off CALINE3, but are specifically designed for determining the
build-up of CO hotspots resulting from traffic stagnation, particularly at intersections [60].
CAL3QHCR is the “refined” version of CAL3QHC and consequently requires a greater
data input, in particular localised meteorological data [60].

In recent years, CAL3QHC has been applied to the epidemiological study of the
congenital effects of vehicular pollutants [72] and assessing the spread of CO, NOx and
VOCs from intersections in India [73].

5.2.6. CTDMPLUS

As suggested by its name, Complex Terrain Dispersion Model Plus Algorithms for
Unstable Situations (CTDMPLUS) is designed for use in complex terrain situations [74].
However, it can be used in all stability conditions (including stable and neutral condi-
tions) [60]. From a review of the literature, it does not appear to be commonly used in
contemporary settings.

5.2.7. ISC

The ISC (Industrial Source Complex) model, as reported and evaluated by
Bowers, et al. [75], was previously the approved Gaussian plume model of the US En-
vironmental Protection Agency (EPA) [25]. Recent applications of the ISC model include
modelling VOCs downwind of a petrochemical manufacturing plant [76] and monitoring
a number of pollutants (CO, VOC, NOx and PM10) in Italian agricultural land [77,78].
Some authors also combine the ISC model with AEROMOD for improved accuracy of the
results [79,80].

5.2.8. OCD

The Offshore and Coastal Dispersion (OCD) model is a straight-line Gaussian model,
designed for predicting the dispersion of pollutants over marine or coastal regions [60].
Changes as the plume crosses the coastline are incorporated [60]. This model has been used
across a range of environments, including the Gulf of Mexico [81].

6. Lagrangian Models
6.1. Introduction

Lagrangian models simulate a number of “puffs” of pollutants emitted from the source,
usually at regular intervals. The most common is a “Gaussian puff” model, where each puff
is assumed to follow a Gaussian distribution as it moves downwind and expands. The puffs
are 3D elements that expand in all dimensions (x, y and z) over time, concurrently moving
downwind from the emission source. A model may comprise hundreds to hundreds
of thousands of these theoretical puffs [25]. As each puff is treated independently, they
can have varying rates of dispersion and move in various directions, allowing for more
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realistic modelling of local conditions within the simulation. Another related model of this
type is the Lagrangian random walk model, where the plume is discretised as numerous
independent tracer particles. The particles are transported by the mean wind field with
local turbulence accounted for using a stochastic ‘random walk’ algorithm. In particular,
Lagrangian models show improved accuracy in models with complex topography or
flow patterns (e.g., recirculation of the pollutants) and temporal variation in emissions
or meteorology.

Lagrangian models are often used for modelling across longer distances and time-
frames (up to several years long) [25]. In contrast, Gaussian plume models are typically
restricted to predictions up to 50 km from the point source [23]. The field of Lagrangian
modelling was introduced by Rodhe [82], Rodhe [83] and has gathered momentum rapidly
since that time.

Time steps of between 1 and 180 s may be used [14,84]. As with Gaussian plume
modelling, the assumption of complete pollutant reflection from the ground and upper
atmospheric boundary layer may result in misleading conclusions unless this is taken into
account [85,86].

6.2. Examples
6.2.1. AFTOX

The AFTOX (Air Force Toxic) chemical dispersion model was created by Kunkel [87].
It assumes that four Gaussian puffs are released from the source every minute. As it
does not account for decay or settling of the pollutants, AFTOX often provides higher
pollutant concentrations and a lower accuracy compared to other model types [34]. AFTOX
is restricted to neutrally buoyant gases, but is particularly useful for modelling liquid spills
which subsequently evaporate [88].

AFTOX was recently used as the basis for modelling investigating the relationship
between raindrop size and the scavenging efficiency of aerosol particles [89].

6.2.2. CALPUFF

CALPUFF is the approved long-range (>80 km) atmospheric emissions model of the
US EPA [25]. However, CALPUFF also finds use in short-range simulations with complex
surface topography [90], being widely used as a regulatory model in Australian and New
Zealand. CALPUFF is versatile at both short-range and long-range simulations [25]. With
more recent software such as VISTAS version 6, CALPUFF can be run at timescales of less
than one hour [91].

Applications include the modelling of odour dispersion [92,93], dispersion of various
pollutants produced by industrial facilities [62] and in the study of shipping emissions in
a Western Australian port [94]. One application of particular note was the modelling of
atmospheric mercury released from a coal-fired power plant in Mexico [95]. Numerous
studies have also utilised CALPUFF in modelling dispersion over complex terrain [90,96].

6.2.3. Hybrid Eulerian–Lagrangian Dispersion Models (HDMs)

Hybrid models combining the Eulerian and Lagrangian methods, as outlined by
Andrén [97], remain relatively common, particularly for simulating dispersion close to
point-line sources [14]. The emissions are initially modelled as puffs using the Lagrangian
method, then after travelling a specified distance or expanding to a specified level, the
puffs are assumed to approximate a volume emission. The Eulerian method then takes over
to calculate the long-range pollutant dispersal [14]. The major advantage of this method is
the reduction in required processing power compared to using a Lagrangian model at all
scales [14].

Hybrid models have been used in complex environments such as complex urban [98]
and mixed industrial-residential environments [99], and in combination with CFD mod-
elling to predict PM10 levels [100] and other pollutants [101] in complex scenarios.
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7. Computational Fluid Dynamics Models
7.1. Introduction

Computational fluid dynamics (CFD) has been a well-established modelling technique
in engineering disciplines for many years. However, it is only relatively recently that it
was turned toward the application of modelling atmospheric pollutants. CFD is based off
Navier–Stokes equations, which are 3-dimensional, unsteady, non-linear, partial-differential
equations that can exactly model the flow of atmospheric gases. The number of unknowns
exceeds the number of discretised equations, hence different techniques are used to model
unknown turbulence terms to find a solution. A Langrangian or Eulerian framework is
incorporated into the model in order to calculate the transport and dispersion of contami-
nants through the atmosphere. Depending on the fidelity and resolution of the simulation,
CFD models can require very large amounts of computing power.

There are three major classes of CFD models: Reynolds-Averaged Navier Stokes
(RANS), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).

7.2. Examples and Uses

Brown, et al. [102] compared the Quick Urban and Industrial Complex (QUIC) dis-
persion model, based off empirical parameterizations of the flow around and between
buildings in order to model wind flow in an urban environment. Although the results of
the model provided a similar accuracy to standard CFD modelling in this instance, the
advantage of CFD models is that wind flow through novel building configurations and/or
combinations can be simulated, rather than relying on empirical data.

Mocho, et al. [43] used a CFD model to investigate the movement of formaldehyde
in an indoor setting. As expected, the accuracy of the results was improved over a simple
box model.

CFD has been used for modelling the near-field dispersion of pollutants, when plumes
of varying buoyancies were present [103]. Other uses include the modelling of PM10
movement [100] and the movement of reactive chemical components [104].

8. Street Network Models
8.1. Introduction

The street network model is currently the least utilised contemporary modelling
technique [105]. This method, designed for the analysis of vehicle emissions in built-up
urban environments, typically treats each street as a line source of emissions, with the
quantity of emissions calculated from the traffic volume along that street.

8.2. Examples
SIRANE

The SIRANE model, developed by Soulhac, et al. [106], is specifically designed for
modelling pollutant dispersal from traffic in urban regions. To date, it is the main street
network model reported in the literature [105]. Each street is modelled as a box, with
transfer of pollutants occurring along the box (i.e., along the street), between boxes (at
street intersections) and between boxes and the atmospheric boundary layer [106]. Atmo-
spheric conditions may change hourly, but are assumed to be constant in between these
timepoints. The model has been validated against wind tunnel data [107] and against a
year of NO2 emissions data [105]. However, work by Wang, et al. [108] has suggested that
the output of SIRANE shows a poor correlation with near-road NO2 concentrations, but
better correlation with the average NO2 values. Nevertheless, SIRANE has been used in
several epidemiological studies, particularly in France [109–111].

Derivative street pollution models have been created based off SIRANE, including
MUNICH (Model of Urban Network of Intersecting Canyons and Highways), which utilises
a grid modelling method [112].
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9. Other Models

Specialised models are available for modelling pollutant dispersion over long ranges,
in complex terrain, and for photochemically reactive pollutants [23]. One example is the
Operational Street Pollution Model (OSPM) for modelling the chemistry of photochem-
ical smog formation [108,113]. Other common photochemical models include CMAQ
(Community Multiscale Air Quality), CAMx (Comprehensive Air quality Model with
extensions), UAM (Urban Airshed Model®) and CALGRID [25]. Of particular note are
CAMx, an open-source model [114], and UAM, the most widely used photochemical air
quality model [25].

Statistical models are available for the short-term forecasting of air quality, based off
recent and current air quality measurements [115]. Such models do not seek to establish
cause and effect, rather solely aiming to link patterns in emission trends to the air qual-
ity [25]. In a similar fashion, machine-learning algorithms have also been trialled for the
prediction of O3, NO2 and SO2 concentrations [116].

Due in part to the short lifespan and unique properties of odorous compounds, air
quality models specifically designed for predicting the dispersion of such compounds are
available [25], such as ModOdor [117].

10. Conclusions

Atmospheric pollutant dispersion models have played an enormous role in setting and
regulating atmospheric emission levels and have likely played a vital role in the improve-
ment in air quality observed across many westernised countries over the past few decades.
With new applications and models reported on a weekly basis, the emissions modeller
is faced with a baffling array of models to choose from. However, a basic understanding
of the mechanisms behind each model and the strengths and limitations of each should
assist in guiding this choice. Particularly with advances in computer processing power and
simulation abilities, the results produced by atmospheric pollutant dispersion models are
more detailed and accurate than ever before. It is hoped that regulatory bodies will be able
to utilise this accuracy in such a way that the world’s air quality continues to improve over
the coming years.
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