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Abstract: Building energy consumption is affected by several factors, including its physical char-
acteristics, indoor/outdoor environment, and appliances. However, the occupant’s behaviour that
governs and controls the building’s energy consumption must not be forgotten. In most of the earlier
studies, occupant behaviour is modelled as static or fixed occupancy profiles. These profiles are
acknowledged as the main source of discrepancy between the predicted and actual building energy
performance. Several studies have been performed to identify the occupant’s sustainable energy
behaviours related to social, climate, economic, regulations, and personal aspects. However, building
indoor configuration such as space-layout planning has various impacts on occupant sustainable en-
ergy consumption behaviour as indoor space layout might affect occupant’s movement and presence.
Furthermore, it may link to the occupant’s particular activities or actions that happen at a specific
position within an indoor space. So, this study used an Agent-Based Modeling (ABM) approach
to understanding the influence of indoor layout configuration on occupant energy consumption
behaviour in residential households in Chittagong, Bangladesh. The study has shown a consider-
able amount of building energy savings while using a sustainable space layout configuration. The
simulated energy consumption data from the ABM model was further validated using the real data
collected from the available smart meters in the case study location. Thus, the study will assist
in recognizing the proper space layout arrangements with occupant choice and their behavioural
intentions of residential building energy savings for low-income economies.

Keywords: building layout; occupant’s behaviour; energy-consumption; agent-based modeling

1. Introduction and Background

The residential and commercial building industry is an important opportunity for
accelerating the transformation of energy-saving and ensuring a worldwide low-carbon
future [1,2]. According to the IEA-EBC (International Energy Agency-Energy in Buildings
and Communities) [3], the typical building energy performance might be influenced by six
essential factors such as climatic condition, building envelope, interior design, building
energy and service systems, building operation and maintenance, as well as occupant
behaviour [4,5]. Reviewing the current findings on building energy conservation, one can
recognize that, for the most parts of such studies focus on operational energy, comprising
building energy and maintenance, as well as building service systems. Nevertheless, mov-
ing beyond the technological approaches studied by these findings to buildings analysis,
variations in occupants’ and energy consumption behaviour of occupants have recently
been noticed to be a comparatively economical option for building energy saving. Occupant
energy consumption behaviour is mostly well-defined as the occupants’ actions towards
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the building energy-related events, i.e., controls of appliances such as HVAC, lighting, win-
dows, blinds, etc. [6,7]. However, it has been noticed that precise predictions of occupant
behaviour have frequently been achieved because of its arising from the intrinsically differ-
ent characteristics of individual occupants. Moreover, many researchers have also observed
that there can be tremendous discrepancies between the inhabitant’s or occupant’s annual
energy consumption, even for nearly identical buildings [8,9]. Nevertheless, this study
focuses on energy saving from a different point of view by emphasizing occupant-oriented
perspectives, based on the assessment of accounting for saving components that neglect
the actual energy consumption of the building occupants [10]. In this regard, Occupant
Centred Design (OCD) techniques (i.e., space layout deployment) may incorporate an inves-
tigation into how and why individuals’ occupants use energy [11,12], and this knowledge
can advise the plan about the proper interventions to improve energy conservation [13].
Moreover, occupant’s space layout deployment is one of the design efforts between ‘design
development’ and ‘scheme design’ in the initial design phase. It is a significant part of the
building that affects the overall building energy consumption in the future. Furthermore,
earlier studies have demonstrated that there is an incredible gap between the energy-saving
potential and data availability to help the design in the early stage [14,15]. As one signifi-
cant task in the early design stage, space layout is required to have great possibilities of
energy saving. In addition, a small number of analyses have been approached to evaluate
the impacts of indoor space layout on building energy consumption [11,16]. All studies
have revealed that space layout can considerably influence building energy performance.
Furthermore, the bigger part of these studies is the mixed space model with several aspects,
for instance, occupant’s operation and movement strategy [6], shading framework [17],
and window to wall ratio [18]. It makes it problematic to evaluate the effect of space layout
dependent on the existing research. It is fundamental to confine a space plan from different
parameters to completely recognize its influence on the energy consumption of a building.
Thus, this comprehensive study targets breaking down the unfinished effect of occupant
space layout configuration on building energy conservation. Moreover, previous studies
have made significant attempts for modeling building occupant behaviour by applying
various methods [19]. One of the methodologies is the implementation of agent-based
modeling (ABM), which could be considered for stochastic behaviour prediction from the
individual to group-level occupants [20]. Typically, ABM is a simulation-based system that
comprises multiple or single autonomous operators, called “agents”, that interact with
each other and their environmental condition in accordance with specific behaviour rules
or laws. Similarly, the entire parts of an agent in ABM might be symbolized with the aim
that the agents might think and act similar to human [13].

Thus, this study aims to introduce an Agent-Based Modeling (ABM) approach in
the field of space layout deployment on occupant energy conservation behaviour. Here,
building space layout is characterized as the interior collocation of various spaces, which in-
corporates the interior arrangements, the position of interior furniture, equipment, etc. [21].
Moreover, since most occupant-related investigations are designed on synthetic data and
scenarios, therefore this study also tries to fill this gap by presenting a validation ap-
proach using real data obtained from the available smart meter in a residential building in
Chittagong, Bangladesh.

This article is structured as follows; Section 2 describes the methodology of the study;
Section 3 clarifies the results and discussions, including the validation approach, and
Section 4 concludes the study.

2. Methodology

The research approach of the study has been divided into three phases: Phase I: predict-
ing occupant behaviours and their action within the layout; Phase II: calculating the energy
consumption using the ABM model and Phase III: validating the output with real data.
Here, the ABM model is constructed using the AnyLogic modeling tool, which is a broadly
established simulation platform, especially in the engineering, business, and sociology
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domain. Figure 1 represents the basic components of the proposed study framework. In this
framework, assigning behaviour, agent decision-making process, agent interactions, and
learning addresses Phase I; layout deployment, energy interface, Revit, Dynamo_Excel plat-
form and simulation outputs address Phase II, and the “Model Validation & Interpretation”
address Phase III.
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Figure 1. Whole research framework.

Usually, an occupant agent observes its surroundings, which is well-described by the
input data and the space layout information as well as thermal and visual situations of the
specified spaces. The layout conditions (Figure 2) correspond to the individual’s agent’s
destination (e.g., seating point) and other parameters (e.g., switch distance) that allow an
occupant agent to realize its motivation to keep track of the energy calculation. The goal of
the energy estimation is to describe how agent (occupant) behaviours influence the interior
of allocation within the space. This can expressively influence the occupant’s destination;
switch distances and environmental conditions that also consider the behavioural variations
made by occupant agents. The last part of the framework is intervention and model
validation, which determine the flexibility and robustness of the proposed model.
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3. Results & Discussion
3.1. Model Output

Using the developed ABM model, several simulations were executed. The simulation
outcomes were calculated in one-minute interval. The following figures (Figures 3 and 4)
show the simulation outcomes for two individual rooms (similar size, dimension, and
indoor allocation) of a residential building. This includes individual energy consumption
patterns without and with intervention for a group of occupants. The simulated results
indicate a considerable amount of building energy savings while using a sustainable space
layout configuration. However, the energy consumption pattern and potential savings for
similar rooms were different. It may connect to the occupant’s number related to metabolic
gains from the human body as well as indoor and outdoor environmental conditions [19].
In general, during the summer season, the outdoor solar radiation and temperature are
above average, as well as heat gains from the building envelope are also high [19,22].
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Figure 3. Simulated energy consumption profile for space layout 1 (Room 1).

Environ. Sci. Proc. 2022, 15, 22 4 of 8 
 

 

Figure 2. Occupant seating place and energy spot. 

3. Results & Discussion 
3.1. Model Output 

Using the developed ABM model, several simulations were executed. The simulation 
outcomes were calculated in one-minute interval. The following figures (Figures 3 and 4) 
show the simulation outcomes for two individual rooms (similar size, dimension, and in-
door allocation) of a residential building. This includes individual energy consumption 
patterns without and with intervention for a group of occupants. The simulated results 
indicate a considerable amount of building energy savings while using a sustainable space 
layout configuration. However, the energy consumption pattern and potential savings for 
similar rooms were different. It may connect to the occupant’s number related to meta-
bolic gains from the human body as well as indoor and outdoor environmental conditions 
[19]. In general, during the summer season, the outdoor solar radiation and temperature 
are above average, as well as heat gains from the building envelope are also high [19,22]. 

 
Figure 3. Simulated energy consumption profile for space layout 1 (Room 1). 

 
Figure 4. Simulated energy consumption profile for space layout 2 (Room 2). 

0
2
4
6
8

10
12
14
16
18
20

20
20

/5
/2

20
20

/5
/4

20
20

/5
/6

20
20

/5
/8

20
20

/5
/1

0

20
20

/5
/1

2

20
20

/5
/1

4

20
20

/5
/1

6

20
20

/5
/1

8

20
20

/5
/2

0

20
20

/5
/2

2

20
20

/5
/2

4

20
20

/5
/2

6

20
20

/5
/2

8

20
20

/5
/3

0

20
20

/6
/1

20
20

/6
/3

20
20

/6
/5

20
20

/6
/7

20
20

/6
/9

20
20

/6
/1

1

20
20

/6
/1

3

20
20

/6
/1

5

20
20

/6
/1

7

20
20

/6
/1

9

20
20

/6
/2

1

20
20

/6
/2

3

20
20

/6
/2

5

20
20

/6
/2

7

20
20

/6
/2

9En
er

gy
 C

on
su

m
pt

io
n(

kW
h)

Date

Room 1

Without_Intervention With_Intervention

0

2

4

6

8

10

12

20
20

/5
/2

20
20

/5
/4

20
20

/5
/6

20
20

/5
/8

20
20

/5
/1

0

20
20

/5
/1

2

20
20

/5
/1

4

20
20

/5
/1

6

20
20

/5
/1

8

20
20

/5
/2

0

20
20

/5
/2

2

20
20

/5
/2

4

20
20

/5
/2

6

20
20

/5
/2

8

20
20

/5
/3

0

20
20

/6
/1

20
20

/6
/3

20
20

/6
/5

20
20

/6
/7

20
20

/6
/9

20
20

/6
/1

1

20
20

/6
/1

3

20
20

/6
/1

5

20
20

/6
/1

7

20
20

/6
/1

9

20
20

/6
/2

1

20
20

/6
/2

3

20
20

/6
/2

5

20
20

/6
/2

7

20
20

/6
/2

9

En
er

gy
 C

on
su

m
pt

io
n(

kW
h)

Date

Room 2

Without_Intervention With_Intervention

Figure 4. Simulated energy consumption profile for space layout 2 (Room 2).

3.2. Validation

Typically, a validation approach is required for the simulated model to check its robust-
ness and feasibility. The purpose of this approach is to compare the energy consumption
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data obtained from the real occupied building. Typically, real energy data are empirical,
commonly called “true” data; it is recommended as a powerful validation tool because it
can be manipulated to evaluate the reviewing data [23]. In this regard, simulated energy
consumption data were further validated using the real data obtained from the smart meter
(Figure 5).
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Herein, upon the prior consent from the inhabitants of the four apartments, the time
interval for smart meter data collection was set to approximately 24 h, and these data
were collected and written in a Microsoft Excel file. Figures 6 and 7 show the model and
smart meter estimated (during intervention) monthly energy consumption data for the
multi-family houses at XX Port Connecting Road, Chittagong. XX is a fictitious number as
we do not want to disclose the address of the building for data security purposes.
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Figure 6. Model vs. Smart meter data for Room 1(RMSE: 4.03%, MBE: −2.20%).
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Figure 7. Model vs. Smart meter data for Room 2 (RMSE: 1.89%, MBE: −0.90%).

The data demonstrates that the simulated model slightly underestimated (i.e., negative
MBE values) the occupant energy consumption for Room 1. On the other hand, there is a
similar energy consumption pattern for both simulated and smart meter provided energy
consumption profiles for Room 2.

Several reasons exist for the energy discrepancy between the model-generated output
and real energy data. However, for data reliability checking, the American Society of
Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) standard 14-2002 [24]
and Federal Energy Management Program (FEMP) guidelines [25] were considered to
check the data correction tolerance. It includes verifying two dimensionless errors, called
Mean Bias Error (MBE) and Coefficient of Variation of Root Mean Square Error CV(RMSE).
Normally, the standard correction tolerance of MBE and CV(RMSE) are ±10% and 30%,
respectively. This study showed that in all cases, MBE and CV(RMSE) values lie within the
acceptable range (e.g., for Room 1: RMSE: 4.03%, MBE: −2.20%; and Room 2: RMSE: 1.89%,
MBE: −0.90%).

In summary, although there are substantial variations that appeared between the
simulated and observed data, still the majority of the data fall within the standard tolerance
limit specified by ASHRAE and FEMP guidelines. Indeed, occupant behaviour is tough
to show due to the randomness and highly stochastic nature of residents. The study also
revealed that it is essential to explore the general pattern of individuals’ behaviour and
integrate the data with an energy simulation model as well.

4. Conclusions

The study seeks the influence of occupant behaviour in building energy conservation
in the context of indoor layout configuration using agent-based modeling (ABM). The
study aim is satisfied with the implementation of the ABM approach to promote an energy-
efficient building system and identify the key players through appropriate intervention. The
study also offers a validation approach to improve the simulation reliability, trustworthiness
as well as robustness of the model. Although there is a smaller amount of energy-saving
prospects noticed due to applied intervention, however, both the simulation model and
the experimental study revealed that layout re-configuration (i.e., intervention) plays a
significant influence on occupant energy consumption profile.
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It is mentioned that the study only considers a few space layouts (e.g., only two rooms)
for data validation purposes, as extended data gathering cannot be possible due to the
COVID-19 pandemic. A wide-ranging space layout selection and broader data collection,
including further behavioural laws/rules, should be identified and incorporated into the
framework for modeling more complex occupant comfort and behaviour in buildings.
Moreover, comprehensive knowledge of occupant behaviour will assist in simulating an
advanced energy prediction model which keeps direct cause and impact that would provide
superior control algorithms and systems design. From a diverse point of view, one might
also predict energy inadequacies due to occupant behaviour, permitting engineers and
architects to improve occupant control at an early phase in the design.
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