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Abstract: In this paper, an innovative hybrid modelling technique based on machine learning and
building dynamic simulation is presented for the prediction of indoor thermal comfort feedback from
occupants in an office building in Le Bourget-du-Lac, Chambéry, France. The office was equipped
with Internet of Things (IoT) environmental sensors. A calibrated building energy model was created
for the building using optimisation tools. Thermal comfort was collected using a portable device. A
machine learning (ML) model was trained using collected feedback, environmental data from IoT
devices and synthetic datasets (virtual sensors) extracted from a physics-based model. A calibrated
energy model was used in co-simulation with the predictive method to estimate comfort levels for
the building. The results show the ability of the method to improve the prediction of occupant
feedback when compared to traditional thermal comfort approaches of about 25%, the importance
of information extracted from the physics-based model and the possibility of leveraging scenario
evaluation capabilities of the dynamic simulation model for control purposes.

Keywords: building physics model; machine learning; thermal comfort; hybrid modelling; data-
driven; occupant feedback

1. Introduction

The prediction of indoor environmental quality levels in office buildings is important
for the provision of satisfactory and safe work environments and for the enhancement
of the productivity of personnel and reductions in complaints [1]. Achieving a holistic
control over Indoor Environmental quality (IEQ) and thermal comfort in particular is diffi-
cult as it requires advanced capabilities to evaluate current and future conditions for the
occupants and how they interact with the environment [2]. The increase in available data
from buildings, as well as the wide spread of digital representation of built environment
(digital twins), is producing a substantial amount of data that can be used for current
and future estimations of IEQ levels [3]. Current thermal comfort techniques have shown
shortcomings when compared to actual feedback from occupants regarding comfort. For
example, traditional calculation methods such as the predicted mean vote (PMV) and the
adaptive thermal comfort (EN 16798 and ASHRAE 55) reached limited accuracy when
compared to feedback from occupants [4]. New methods based on data-driven solutions, in
particular machine learning (ML), showed the ability to learn complex interactions among
data, surpassing current comfort calculation methods [5]. Some environmental variables
useful for the training of machine learning methods are difficult and expensive to measure
by sensors (e.g., operative temperature, mean radiant temperature, and surface tempera-
ture) [6]. Digital twins intended as calibrated building energy models cover a fundamental
role in generating an accurate representation of the building environment by creating
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digital versions of the actual buildings [7]. In this work, the calibrated building energy
models are used as a source of virtual variables data that are used to enhance the predictive
capability of machine learning and, at the same time, as a source of data regarding different
operational scenarios of the building. This work contributes to the current literature by
focusing on three main objectives: (1) testing the capabilities of ML models when used for
predicting thermal comfort votes of occupants; (2) combining the use of ML models for
thermal comfort evaluation with physics dynamic simulation in a co-simulation environ-
ment to generate dynamic predictions of relevant metrics; (3) establishing a comparison
with traditional normative methods of evaluating thermal comfort.

2. Materials and Methods

The methodology used was based on the combination of data-driven methods and
building dynamics simulation, as shown in Figure 1.
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Figure 1. Methodology diagram.

First, relevant comfort-related data were collected by setting up an occupant comfort
experiment in the building case study and installing a network of IoT sensors to gather rele-
vant environmental information. A portable device was used to gather feedback regarding
thermal comfort in the building. A baseline energy model of the building was generated,
and a calibration procedure was performed. This was achieved by gathering building data,
by leveraging data analysis of time series from meters and IoT sensors in the building
for the generation of tailored operational profiles, and by using optimization techniques
for the fine-tuning of important modelling parameters. Several machine learning models
were trained, and their predictions were evaluated in comparison to the available thermal
comfort data. In particular, a Bayesian multilinear regression model was trained on the
available comfort data, environmental variables from the IoT, and virtual sensors extracted
from the calibrated model. The calibrated model was used: (i) to gather additional virtual
sensor variables to extend the set of predictors for the ML model; and (ii) as source of
information in a co-simulation environment to exchange data with the ML model for
thermal comfort predictions. In this context, the scenario evaluation capabilities of the
physics-based simulation model was used as a data generation method for operational
scenarios of the building that was processed by the ML model to predict effects on the
thermal comfort.

3. Results

The research methodology described in Section 2 was applied to the Helios building
research centre in Le Bourget-du-Lac, France, where a comfort experiment was performed
in 2018 with a focus on the summer months and then extended over an entire year until
June 2019. Figure 2 shows the feedback app used during the comfort experiment (left) and
the baseline building energy model (right). Figure 3 depicts the results of the calibration
process with the comparison of the baseline calibrated model and the optimized one (left)
The graph on the right in the same image shows the temperature timeseries output of the
simulation and the actual temperature data gathered from the IoT devices. Figure 4 shows
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the results of the validation of the Bayesian multilinear regression model under different
error acceptance ranges. Figure 5 shows the results of the comparison between the actual
votes from the occupants (extrapolated), the PMV method, and the prediction of the ML
method (Bayesian multilinear regression model).
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model (left). Comparison of air temperature measurements and output of the simulation (right).
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4. Discussions and Conclusions

The results of the model calibration show that a multi-step methodology and continu-
ous data gathering and integration from the real building allows for the evolution of the
baseline model over time, to an operational and finally to an optimized model. The use of
data analysis for the creation of schedules of operations at the building and system levels
allows for a more accurate representation of the actual operations of the building. The
automatic fine-tuning procedure through optimization further shortens the gap between
the real building and the simulated one. Validation tests show that the final model is fully
capable of reproducing the thermal behaviour of the real building with regard to IEQ
variables. The results show that ML algorithms, when compared to normative approaches
such as the PMV method, reduce the prediction error by at least 25%, reaching a highest
accuracy of almost 70% on a 7-value scale and about 85% on a 3-value scale. The use of
Bayesian modelling allowed for a more realistic response in terms of possible ranges of
thermal comfort with minimum and maximum limits of acceptability and for the possibility
of predicting values on a continuous scale. It was possible to extract additional information
for the training of the ML algorithms such as the mean radiant temperature by leveraging
the physics-based model. In conclusion, this work shows that by merging building physics
modelling to machine learning techniques, it is possible to create a hybrid modelling
approach which showed several advantages and is able to overcome the limitations of
traditional thermal comfort models for office buildings. The hybrid approach can be further
leveraged to create tailored predictive models for testing building control routines, as well
as optimised operational scenarios, before being applied on an actual building.
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