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Abstract

As climate variability intensifies, its impacts are increasingly visible through disrupted
agricultural systems and rising food insecurity, especially in climate-sensitive regions.
This study explores the complex relationships between environmental stressors, such as
rising temperatures, erratic rainfall, and soil degradation, with food insecurity outcomes in
selected districts of Uttarakhand, India. Using the Fuzzy DEMATEL method, this study
analyzes 19 stressors affecting the food supply chain and identifies the nine most influ-
ential factors. An Environmental Stressor Index (ESI) is constructed, integrating climatic,
hydrological, and land-use dimensions. The ESI is applied to three districts—Rudraprayag,
Udham Singh Nagar, and Almora—to assess their vulnerability. The results suggest that
Rudraprayag faces high exposure to climate extremes (heatwaves, floods, and droughts)
but benefits from a relatively stronger infrastructure. Udham Singh Nagar exhibits the
highest overall vulnerability, driven by water stress, air pollution, and salinity, whereas
Almora remains relatively less exposed, apart from moderate drought and connectivity
stress. Simulations based on RCP 4.5 and RCP 8.5 scenarios indicate increasing stress
across all regions, with Udham Singh Nagar consistently identified as the most vulnerable.
Rudraprayag experiences increased stress under the RCP 8.5 scenario, while Almora is the
least vulnerable, though still at risk from drought and pest outbreaks. By incorporating
crop yield models into the ESI framework, this study advances a systems-level tool for
assessing agricultural vulnerability to climate change. This research holds global relevance,
as food supply chains in climate-sensitive regions such as Africa, Southeast Asia, and
Latin America face similar compound stressors. Its novelty lies in integrating a Fuzzy
DEMATEL-based Environmental Stressor Index with crop yield modeling. The findings
highlight the urgent need for climate-informed food system planning and policies that
integrate environmental and social vulnerabilities.

Keywords: environmental stressors; food supply chains; climate change; RCP 4.5 and 8.5

1. Introduction

Global food systems are under increasing pressure as the effects of climate change
intensify, resulting in a fragile and progressively insecure food supply chain [1,2]. Across
continents, erratic rainfall patterns, rising temperatures, soil degradation, and extreme
weather events are troublesome for agricultural productivity, causing fluctuating grow-
ing seasons and threatening the stability of rural livelihoods [3]. This convergence of
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climate-induced environmental stressors poses complex and systemic risks not only to
crop production but also to the entire food supply chain. For many vulnerable commu-
nities, especially those in climate-sensitive regions, the growing unpredictability in food
availability and access could undermine long-term food security, deepen poverty, and
broaden socio-economic inequalities. Food supply chains are multifaceted systems that
link agricultural production to market and consumption networks, often spanning local,
regional, and global scales [4]. These systems are deeply interconnected and are gradually
being exposed to systemic disruptions, particularly those driven by climate variability.

Climate change acts as a stress multiplier by augmenting risks at multiple nodes
in the food chain, from on-farm production to transportation and market access. As
environmental extremes become more frequent and intense, there is a critical need to
understand how different climate-related stressors interact, which ones have the most
severe downstream impacts, and how they influence the capacity of agricultural systems to
sustain food availability, accessibility, and utilization [5].

Climate and agriculture have a direct and complex relationship. With a change in
temperature, crop growth cycles are affected, precipitation patterns are used to determine
irrigation demand, and extreme events, such as floods or droughts, may cause the wipe-
out of entire harvests [6]. However, these events do not occur in isolation but often in
compounding forms, such as when heat stress coincides with water scarcity or when pest
outbreaks follow changes in humidity and vegetation dynamics. Even with moderate
warming scenarios, significant reductions in crop yields are expected in many global bread-
basket regions, particularly for staple crops such as wheat, maize, and rice [7,8]. Moreover,
climate stressors affect the agricultural ecosystem beyond crop yields. Soil health deterio-
rates under prolonged heat and erratic rainfall, while freshwater availability acts as a key
resource for irrigation, which is threatened by glacial melt, overuse, and salinization [9].
Pests and diseases are also migrating to unaffected areas due to unstable temperature zones,
adding additional challenges to crop management. These biophysical changes translate into
disruptions in the food supply chain, affecting logistics, storage, and the predictability of
market supply. The most severe impacts are borne by smallholder farmers and low-income
consumers, particularly in countries with weak adaptive capacity [10].

Environmental stressors are multifactorial and context-specific. While temperature
variances and precipitation variability are prominent, other factors such as sea-level rise,
land degradation, desertification, and climate-induced migration are equally influential.
The cumulative effect of these stressors is a form of systemic fragility that weakens the
resilience of food supply chains. For instance, increased climate-induced migration in
rural areas can result in labor shortages during critical harvest periods. Similarly, the
demolition of infrastructure due to floods can interrupt cold chain logistics, leading to
increased food spoilage and economic losses. Not all stressors impact the system equally or
linearly, but some stressors may act as root causes (e.g., persistent droughts that reduce soil
fertility), while others may exacerbate existing vulnerabilities. Therefore, it is essential to
distinguish between dominant and weak stressors and to evaluate how they interact across
temporal and spatial scales. Understanding the structure of these interrelationships is key
to developing targeted interventions that enhance food system resilience.

While environmental factors are essential, the human dimensions of food security,
namely, access, affordability, and utilization, cannot be overlooked. Vulnerable communi-
ties, particularly in low- and middle-income countries, are disproportionately affected by
climate-induced food system shocks [7]. These communities often depend on subsistence
agriculture, have limited access to adaptive technologies, and are further exposed to food
price volatility. Moreover, the loss of crops due to climate stressors may lead to nutritional
deficiencies, increased household food insecurity, and may contribute to long-term health
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consequences. Socio-economic impacts extend beyond rural households. Urban popu-
lations, especially those dependent on food imports or interregional supplies, also face
increasing risks due to supply chain disruptions [11]. For example, urban food prices can
spike rapidly following climate-induced production shortfalls in nearby rural regions. This
interdependence between rural production systems and urban consumption underscores
the need for integrated food system models that consider environmental, economic, and
social vulnerabilities.

Given the multiplicity of interacting factors, modeling the dynamics of environmental
stressors and their cascading impacts on food supply chains requires sophisticated analyti-
cal approaches. To address this complexity, this study adopts a Fuzzy Decision-making Trial
and Evaluation Laboratory (Fuzzy DEMATEL) approach to analyze the interrelationships
and influence structures among key climate-induced environmental stressors. Through this
method, we aim to uncover which environmental factors are the most critical drivers of
food supply chain disruption, and which ones are more symptomatic or reactive in nature.
The research objectives formulated for this study are as follows.

RO1: Identification and categorization of key environmental stressors impacting the
stability of food supply chains.

RO2: To establish the cause—effect relationships among the environmental stressors
affecting the stability of food supply chains.

RO3: To develop and simulate a composite Environmental Stressor Index (ESI) to
assess agricultural vulnerability under current and future climate scenarios (RCP 4.5 and
RCP 8.5).

Unlike conventional regression-based models, Fuzzy DEMATEL offers a systems-
thinking lens, helping to visualize and quantify the hierarchies of influence among stres-
sors. This is essential for identifying leverage points for intervention areas where policy
or technological input can yield the highest systemic resilience gains. Recent evidence
has underscored the urgency as, according to [12], approximately 74% of India’s rural
population remains directly dependent on climate-sensitive agriculture, while [13] warned
that South Asia faces among the steepest projected increases in extreme heat events and
erratic precipitation by 2050. Uttarakhand, with its fragile Himalayan ecosystems and
intensifying anthropogenic pressures, exemplifies these risks, as shown by a 22% increase
in reported extreme weather events between 2015 and 2022 [14]. Against this backdrop, the
present study aims to develop and apply an ESI to evaluate the composite vulnerability
of food supply chains under climate variability and change. Specifically, we investigate
three districts, Rudraprayag, Udham Singh Nagar, and Almora, as representative cases
of diverse agro-ecological and socio-economic contexts. This paper addresses the cause—
effect relationships among environment stressors and identifies the most prominent and
influenced stressors to be considered for simulation under RCP 4.5 and 4.8 scenarios.

2. Trends in Climate

The historical patterns in the summer maximum and the winter minimum temper-
atures, as well as rainfall, from 1990 to 2019 are analyzed and reported by the Center for
Study of Science, Technology, and Policy [14,15]. The report shows that there is an increase
of up to 0.9 °C in the summer maximum temperature and 0.5 °C in the winter minimum
temperature in all districts of India [Prajapati]. Also, a warming of up to 0.5 °C is recorded
in 70% of the districts of India. Warming in the northern states is higher compared to the
southern states. The highest warming of 0.5-0.9 °C is recorded in 54% of districts of India,
including those in the northern states of Punjab, Haryana, Uttarakhand, Uttar Pradesh, and
Bihar, the western states of Rajasthan and Gujarat, as well as the north-eastern states [15,16].
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During this historical period, there is a noticeable increasing trend in rainfall during
the Kharif season (June to September) across all districts of India. Overall, rainfall increases
by up to 15% during this period. The highest increase, ranging from 10% to 15%, is observed
in the northeastern states, specifically in districts of Arunachal Pradesh, Sikkim, Meghalaya,
and northern Nagaland, as well as in the Western Ghats districts of southern India [17].
A moderate increase of 5% to 10% is recorded in approximately 20% of India’s districts,
including parts of Bihar, Chhattisgarh, Odisha, Jharkhand, and the majority of Madhya
Pradesh. A smaller increase, ranging from 1% to 5%, is observed in about 45% of districts,
notably in Karnataka, Tamil Nadu, Telangana, Andhra Pradesh, and the northern states of
Haryana and Punjab, along with the western regions of Rajasthan and Gujarat [14,15]. A
warming of 1 °C to 2.5 °C is projected for a majority of districts compared to the historical
period, considering both RCP 4.5 and RCP 8.5 scenarios. A warming of >1 °C is projected
for a majority of districts compared to the historical period, considering both RCP 4.5 and
RCP 8.5 scenarios [18,19].

2.1. District-Level Climate Projections Under RCP 4.5 and RCP 8.5 Scenarios

Under the RCP 4.5 scenario, a moderate warming trend is apparent across most Indian
districts. Approximately 72% of districts are projected to experience a temperature rise
between 1 °C and 1.5 °C. A total of 15% of districts may see warming between 1.5 °C and
2 °C. Only 2% of districts will likely warm by 2 °C to 2.5 °C, while a few isolated districts
(1%), such as Nashik and Jalgaon in Maharashtra, are projected to face the highest warming
in the range of 2.5 °C to 3 °C. A total of 11% of districts are accurately projected to see
1 °C warming, while 13% of districts may experience less than 1 °C warming, especially
in parts of Karnataka and Rajasthan. Regionally, 1.5 °C to 2 °C warming is likely in some
districts of Uttarakhand, Uttar Pradesh, Arunachal Pradesh, and Tamil Nadu. In terms of
Kharif season rainfall, 35% of districts are anticipated to experience a moderate increase of
10-15%, mostly in states such as Karnataka, Tamil Nadu, Kerala, Odisha, and West Bengal.
About 18% of districts could see an increase of 15-25%, while only 2% of districts may see a
significant rise of 25-35% in rainfall, including parts of Maharashtra, Gujarat, and Bihar.
However, 45% of districts are projected to have less than a 10% increase in Kharif rainfall,
signifying localized rainfall escalation rather than uniform increases. High-intensity rainfall
events are predicted to increase in various states including Maharashtra, Chhattisgarh,
Uttar Pradesh, and Himachal Pradesh, though these changes remain scattered [18-20].

In the RCP 8.5 scenario, it is assumed that there will be higher emissions and less
mitigation leading to a more intense warming pattern. In total, 63% of districts are projected
to warm by 1.5 °C to 2 °C, while 15% may experience warming above 2 °C. An additional
2% of districts may warm between 2 °C and 2.5 °C. Extreme warming (2.5 °C to 3 °C) is
anticipated in specific districts such as Amravati, Jalna, Chandel, and Pherzawl, with some
districts possibly exceeding 3 °C. Approximately 17% of districts may warm by 1 °C to
1.5 °C, with only 3% experiencing precisely 1 °C, and 6% experiencing less than 1 °C.
Warming is more widespread and severe under RCP 8.5, extensively affecting regions in
Maharashtra, Manipur, Karnataka, and Gujarat [18]. Rainfall patterns under RCP 8.5 also
show stronger shifts, where 9% of districts could see a 25-35% increase in Kharif season
rainfall, with this trend extending to all districts in Tamil Nadu, Telangana, Gujarat, and
Himachal Pradesh. A significant 50% of districts are anticipated to experience rainfall
increases of 15-25%, while 25% may experience a 10-15% increase. RCP 8.5 leads to higher
and more widespread warming and rainfall variability compared to RCP 4.5. The implica-
tions are significant for regional planning, agricultural resilience, and climate adaptation
strategies, especially in hotspot regions such as Maharashtra, Northeast India, and central
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plains; these areas face both rising temperatures and altered precipitation patterns under
both scenarios.

2.2. Environmental Stressors
2.2.1. Climatic Stressors

Rising temperatures, particularly in tropical countries like India, pose major risks
to agriculture, health, and biodiversity. This rise has already reduced wheat yields and
increased heat-related illnesses [18]. Increasing variability in monsoon onset, duration, and
intensity has disrupted crop cycles and water management. Rainfall variability contributes
to both drought and flood risks, with uneven spatial and temporal distribution [19]. India
has seen a higher frequency of meteorological and hydrological droughts due to erratic
precipitation and rising evapotranspiration [21]. This affects groundwater recharge and
crop productivity. Flash floods and riverine floods have become more common due to
urbanization and intense rainfall [22,23]. The Himalayan region and Indo-Gangetic plains
remain particularly vulnerable [22].

2.2.2. Land Use Stressors

Urbanization leads to the loss of agricultural and forest lands. Between 2001 and
2020, built-up areas increased by over 50%, contributing to the urban heat island effect and
habitat loss. Soil fertility is declining due to over-cultivation, deforestation, and chemical
overuse. About 30% of India’s total land is degraded [24]. Irrigation mismanagement and
groundwater overuse have caused salinity in soils, particularly in Punjab, Gujarat, and
coastal Andhra Pradesh [24]. While warming is dominant, unseasonal cold spells still affect
rabi crops and horticulture, especially in the northwestern and central highlands [25,26].

2.2.3. Hydrological Stressors

The Water Stress Index has worsened in arid zones like Rajasthan and Bundelkhand.
Increased demand and reduced monsoon reliability exacerbate water conflicts [26,27]. India
is the largest extractor of groundwater globally. Critical regions such as Punjab, Haryana,
and parts of Tamil Nadu face alarming depletion. Heatwaves have become longer and more
intense, particularly in central and western India [28,29]. They contribute to labor productivity
loss and mortality [30]. Changing temperature and humidity patterns facilitate pest outbreaks
(e.g., locusts, fall armyworm) and vector-borne diseases like dengue and malaria.

2.2.4. Ecological Stressors

India has seen significant forest cover loss due to mining, infrastructure projects,
and shifting cultivation, particularly in the northeast and central tribal regions [31,32].
Cyclones, cloudbursts, and hailstorms have intensified, with events like Cyclone Amphan
and Uttarakhand cloudbursts causing extensive socio-economic damage. India’s 7500 km
coastline faces sea-level rises, especially in Sundarbans, Chennai, and Mumbai, affecting
livelihoods and mangrove ecosystems. Rising temperatures and dry spells are increasing
the frequency of forest fires, especially in Uttarakhand, Odisha, and Andhra Pradesh [33].

The stressors are shown in Table 1.

During 1990-2019, India experienced a significant warming trend, with summer
maximum and winter minimum temperatures rising by up to 0.9 °C and 0.5 °C, respectively;
northern and northeastern states recorded the highest increases. Rainfall during the Kharif
season rose by up to 15%, with the sharpest increases observed in the northeastern states
and the Western Ghats. Future climate projections indicate further warming of 1-2.5 °C
across most districts under both RCP 4.5 and RCP 8.5 scenarios. RCP 8.5 shows more
widespread and severe warming, particularly in Maharashtra, the Northeast, and central
plains, alongside substantial rainfall variability. These climatic changes are compounded by
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environmental stressors such as droughts, floods, groundwater depletion, soil degradation,
urbanization, extreme weather events, and sea-level rise. In conjunction, these factors pose
severe risks to India’s agriculture, food supply chains, water security, ecosystems, and
livelihoods, emphasizing the urgent need for adaptive and resilient strategies.

Table 1. List of environmental stressors.

Environment Stressors

Definition/Description

Impact on Food Supply Chains

Key Sources

Long-term increase in mean

Reduces crop yields, shortens growing

ES1 Temperature Rise seasons, increases water demand, affects [10]
surface temperatures -
cold storage efficiency
Lo . . Disrupts planting schedules, irrigation
ES2 Rainfall Variability Fluctuathn n amougt, intensity, planning, and crop growth, leads to [15-17]
or timing of rainfall .
unpredictable harvests
Increased occurrence of periods Causes water scarcity, crop failure, and
ES3 Drought Frequency . pero livestock stress, disrupts upstream [18,19]
with below-average precipitation .
supply of raw materials
. . Destroys crops, damages rural
ES4 Flood Events Il?undahon of land from rainfall, infrastructure, roads, and storage, [22,23]
river overflow, or coastal surges L.
delays food distribution
Reduces crop productivity, increases
ES5 Soil Degradation Dfechne in §011 .quahty due to o 1.nput costs (f(?rtlhzer/ [23,24]
erosion, salinization, nutrient loss irrigation), undermines long-term
agricultural sustainability
Groundwater Decline in aquifer levels due to Limits trrigation p F)tentlal, raises cost of
ES6 . . water extraction, increases reliance on [27]
Depletion over-extraction .
erratic surface water
. Indicates systemic risk of irrigation
ES7 Water Stress Index Ratio of water dem;‘md‘tf) failure, affects food processing [27]
renewable water availability . .
operations needing water
Impacts crop pollination, increases
ES8 Heatwaves Prolonged periods of extreme heat post-harvest losses, affects farm [28,29]
labor productivity
Pest and Disease Increase in crop p est.s and diseases Leads to production losses, increased
ES9 due to warming and .. .. [10]
Outbreaks 1. use of pesticides, trade restrictions
humidity changes
Land-Use Conversion of farmland to urban Shrinks agm‘ﬂ.t ural area, fragments
ES10 . . food production systems, causes [26,27]
Change/Urban Sprawl or industrial use ..
logistical delays
Vegetation Loss Reduction in plant b}omass or Indicates stress on croplands, pasture
ES11 ) greenness detected via satellite . [31-34]
(NDVI Decline) areas, and forest—farm interface zones
(e.g., NDVI)
Extreme Weather S . Damages standing crops, logistics,
ES12 Events (Cyclones, nghjlntens1ty weather hazards infrastructure, cold chains, and [26,27]
. disrupt local ecosystems -
Hailstorms) supply coordination
Sea-Level Rise/ Submergence and salinization of Affects rice, coconut, aquaculture,
ES13 . . . . [34]
Coastal Erosion coastal agricultural zones disrupts port-based food logistics
Air Pollution Reduces crop prodgctlv1ty by Lowers ylgld quality and quantity,
ES14 . damaging leaf tissues contributes to long-term [35]
(Tropospheric Ozone) . .
and photosynthesis ecosystem degradation
Forest Fires/ Cl{mate-mduc.ed or anthropogenic Destroys crops, degrades soil, reduces
ES15 . . fires degrading large swaths of g [36]
Biomass Burning . . labor availability, delays transport
agricultural interface
ES16  Salinization/Alkalinity Accumulation of salts in soiland ~ Reduces soil fertility and water usability, [34]

water bodies

prevalent in irrigated drylands
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Table 1. Cont.
Environment Stressors Definition/Description Impact on Food Supply Chains Key Sources
ES17 Cold Spells/ Unseasonal cold temperatures Impacts flowering, delays harvest, [36]
Frost Events affecting crop physiology affects fruits and vegetables :
Lack of precision weather Limits climate-smart decision makin
ES18  Digital Infrastructure Gaps monitoring, early warning and supply chain responsiveness & [37-40]
systems, and ICT tools PPl P
Transport and Ener; Indirect environmental stress due Affects cold chains, food storage, and
ES19 P . . gy to floods, storms, or heat . ’ &8¢ [38]
Disruption d . . delivery networks
amaging roads/grids
3. Methods

The Fuzzy DEMATEL approach improves the assessment of equivocal empirical
data. By employing fuzzy logic, decision-makers can evaluate alternatives based on high,
medium, and low assessment levels. Fuzzy DEMATEL, with its causal diagram architecture,
enables decision-makers to pinpoint essential success determinants, hence improving the
systematic analysis of the situation [38]. This strategy exceeds other multi-criteria decision-
making approaches in decision-making systems. Fuzzy-DEMATEL demonstrates greater
effectiveness than hierarchical approaches in discerning complex interrelations across many
systems, notwithstanding its application in the implementation phase. Fuzzy DEMATEL
exhibits adaptability and responsiveness in decision-making, offering benefits to intricate
information systems with adaptable decision-making capacities. Table 2 outlines the linguistic
scales utilized by the experts to generate their paired evaluations during the investigation.

Table 2. Fuzzy labels.

Terms Score Triangular Fuzzy Values
Very High Influence (VH) 4 (0.75,1.0, 1.0)
High Influence (H) 3 (0.5,0.75,1.0)
Low Influence (L) 2 (0.25,0.5,0.75)
Very Low Influence (VL) 1 (0,0.25,0.5)
No Influence (No) 0 (0,0,0.25)

A structured flow chart for the methodology undertaken is shown in Figure 1.

The criteria for selecting climate data is based on (i) use of CMIP6 multi-model en-
semble projections to ensure the latest generation of scenarios, (ii) bias correction and
downscaling to district-level resolution, and (iii) consistent temporal coverage with histori-
cal IMD datasets for calibration (1980-2019) and projection (2020-2100). A questionnaire is
designed for experts to conduct pairwise comparisons before Fuzzy DEMATEL implemen-
tation. Information on the 15 experts contributing to this study is shown in Table 3.

Table 3. Expert details.

Experts Designation, Area of Expertise Experience
El Environmental Scientist 10+ years
E2 Climatologist/Climate Scientist 5+ years

E3 Agricultural Scientist 5+ years
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Table 3. Cont.

Experts Designation, Area of Expertise Experience
E4 Hydrologist/Water Resource Expert 8+ years
E5 Environmental Scientist 5+ years
E6 Public Policy Expert (Agro-climatic focus) 8+ years
E7 Soil Scientist 10+ years
E8 Remote Sensing and GIS Expert 6+ years
E9 Environmental Scientist 8+ years
E10 Food Systems Expert 10+ years
E11 Agro-Supply Chain Expert 10+ years
E12 Environmental Scientist 8+ years
E13 Environmental Scientist 5+ years
El14 Agro-Supply Chain Expert 8+ years
E15 Agro-Supply Chain Expert 10+ years

Step 1: Identification of Environmental Stressors

and expert selection

l

Step 2: Data collection and application of Fuzzy DEMATEL

analysis

l

Step 3: Cause and effect factors based on D-R values

l

Step 4: Development of Environmental Stressors Index and
Stability test

l

Step 6: Climate Scenario Simulation (CMIPé, RCP 4.5 & 8.5,
crop yvield models)

l

Step 7: Interpretation and Visualization

Figure 1. Flowchart for methodology.
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3.1. Steps for F-DEMATEL

The F-DEMATEL approach is employed to analyze influencing aspects inside a com-
plex system, offering a structured framework to investigate the interconnections among
different elements. The essential steps are as follows:

Step 1: Ask each expert to provide assessment on five levels of 1-5 including Very
High Influence (VH); High Influence (H); Low Influence (L); Very Low Influence (VL); No
Influence (No).

Step 2: Develop the initial direct matrix based on the score provided by the experts.

Step 3: Employ Table 2 to convert the linguistic scale into triangular fuzzy integers.

Step 4: The CSCF method is employed to fuzzy variables to compute the weighted average.

Step 5: Obtaining fuzzy direct relation matrix Z = [Z;;]

nxn’
xlf = (I — minlfy) / A (1)
xmi-‘]- = (mi‘] - minll’fj)/A%% (2)
xrf.‘j = (rf‘] - minlf‘j)/ i 3)
where AT = maxrifj - minlff]« 4)

Step 6: Constructing the normalized direct relation matrix.

1

m = min —, — 5
[max27:1|az]| maxz;?:1|a1]|] ©)
Integrating crisp value through the following equation.
_ YA g

Step 7: Formation of the total relation matrix.

The total of an uninterrupted series of direct and indirect influences among elements
is computed as a geometric propagation according to graph theory principles. The total of
this progression constitutes the matrix of the generic relation T, where I represents ann x n

identity matrix.
T=N(I-N)! 7)

Step 9: Calculating the scores of row sums (D) and column sums (R).

b= [2;'1:1 ti]} nX1 ®)

R= [Z?:l i } 1Xn ©)

3.2. Development of Environmental Stressors Index

The ESI is a composite metric developed to quantify and assess the cumulative impact
of various environmental stressors on vulnerable systems, particularly the food supply
chain. Based on the results from Fuzzy DEMATEL, weights are obtained and normalized
to create dimensionless indicators for each stressor. The ESI developed in this study is
a static composite indicator inspired by causal structures. The use of Fuzzy DEMATEL
(D + R) ensures that stressors with higher systemic importance receive greater weight in
the index. Its design is a weighted aggregation framework rather than a dynamic sys-
tems model. The ESI thus serves as a decision-support tool to identify climate hotspots,
guide risk prioritization, and support targeted interventions in policy and planning for
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climate resilience, particularly in food-insecure regions. The normalization process in this
study uses a uniform min-max scaling baseline across all regions and years. Specifically,
Xmin and Xmax values are determined from the entire dataset (1980-2019 baseline and
2020-2100 projections) rather than from region-specific subsets, ensuring comparability
across districts and scenarios. The normalized values thus fall between 0 and 1, where
1 indicates the most adverse condition observed in the sample and 0 the least. To address indica-
tor directionality, variables are classified into two categories: negative stressors (e.g., temperature
rise, drought frequency, etc.), where higher values imply greater vulnerability, are normalized
directly; in the case of positive stressors (e.g., infrastructure accessibility, internet penetration),
where higher values imply reduced vulnerability, reverse normalization is applied.

The steps are as follows:

Step 1: Identify relevant stressors;

Step 2: Assign weights using Fuzzy DEMATEL centrality (D + R);

Step 3: Normalize the weights using Equation (9)

(D+R)i

Yi=1n(D +R)i (10

Step 4: Collect and normalize stressor data (Xy)
For each region or grid cell (e.g., districts), gather actual values of each stressor. For instance,
X — Xmin

X = 7 11
norm Xmax — Xmin ()

Step 5: Compute composite Environmental Stressor Index (ESI)
ESI =Y\ | Wi Xnorm,i (12)

Step 6: Interpretation of the ESI Scores;
Step 7: Visualize the ESL

3.3. Penalty-Adjusted ESI

To reduce risk of multicollinearity and potential double-counting of highly correlated
stressors, a penalty-adjusted weighting scheme is introduced in the construction of the
ESI. Each indicator’s weight is rescaled according to the sum of its absolute correlations
with other indicators, so that indicators with stronger redundancy are down weighted. The
penalized weights are then normalized to sum to one and used to recalculate ESI scores for
Rudraprayag, Udham Singh Nagar, and Almora.

4. Results and Discussion

Fuzzy DEMATEL analysis is conducted to understand the causal relationships among
19 environmental stressors affecting food supply chain insecurity. By evaluating the cause—
effect dynamics through fuzzy logic and expert input, this study classifies factors into two
key groups—the cause group (influential factors) and the effect group (influenced factors).
The initial direct-relation matrix (Z) is created using Equations (1)—(4), developed based on
expert responses applying the linguistic scale outlined in Table 2. The fuzzy direct relation
matrix is derived from Equations (5) and (6). Equations (7)-(10) yield a comprehensive
relation matrix, as presented in Table 4.
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Table 4. Total-relation matrix.
Total-Relation matrix T for first component of a fuzzy number (1)
ES1  0.0338 0.0701 0.0638 0.0615 0.0759 0.0611 0.0627 0.0661 0.0569 0.0740 0.0792 0.0533 0.0795 0.0471 0.0788 0.0559 0.0740 0.0492 0.0677
ES2  0.0483 0.0255 0.0365 0.0403 0.0522 0.0374 0.0531 0.0423 0.0685 0.0569 0.0718 0.0443 0.0713 0.0370 0.0681 0.0430 0.0698 0.0380 0.0717
ES3  0.0589 0.0438 0.0301 0.0415 0.0620 0.0386 0.0655 0.0543 0.0595 0.0704 0.0625 0.0674 0.0614 0.0644 0.0614 0.0701 0.0611 0.0438 0.0628
ES4  0.0652 0.0474 0.0443 0.0265 0.0770 0.0392 0.0586 0.0526 0.0618 0.0672 0.0757 0.0626 0.0741 0.0454 0.0728 0.0600 0.0562 0.0520 0.0769
ES5 0.0516 0.0514 0.0373 0.0461 0.0273 0.0459 0.0505 0.0356 0.0418 0.0463 0.0640 0.0511 0.0427 0.0392 0.0442 0.0430 0.0426 0.0381 0.0488
ES6  0.0687 0.0536 0.0697 0.0534 0.0606 0.0234 0.0433 0.0411 0.0584 0.0564 0.0623 0.0700 0.0735 0.0413 0.0721 0.0490 0.0647 0.0446 0.0712
ES7  0.0486 0.0412 0.0541 0.0379 0.0578 0.0469 0.0241 0.0511 0.0404 0.0559 0.0515 0.0474 0.0595 0.0418 0.0700 0.0478 0.0662 0.0374 0.0578
ES8  0.0731 0.0561 0.0507 0.0529 0.0785 0.0500 0.0398 0.0279 0.0599 0.0735 0.0622 0.0485 0.0722 0.0657 0.0637 0.0686 0.0686 0.0658 0.0744
ES9  0.0541 0.0650 0.0706 0.0409 0.0760 0.0408 0.0428 0.0272 0.0308 0.0603 0.0729 0.0703 0.0733 0.0544 0.0710 0.0592 0.0719 0.0522 0.0578
ES10 0.0547 0.0664 0.0595 0.0632 0.0636 0.0629 0.0669 0.0385 0.0690 0.0302 0.0625 0.0589 0.0489 0.0495 0.0505 0.0523 0.0480 0.0354 0.0724
ES11  0.0546 0.0528 0.0554 0.0454 0.0697 0.0489 0.0495 0.0395 0.0450 0.0423 0.0320 0.0697 0.0707 0.0510 0.0600 0.0575 0.0367 0.0602 0.0707
ES12  0.0499 0.0393 0.0443 0.0363 0.0439 0.0384 0.0423 0.0619 0.0655 0.0405 0.0419 0.0255 0.0571 0.0496 0.0567 0.0520 0.0560 0.0472 0.0574
ES13  0.0558 0.0416 0.0655 0.0382 0.0682 0.0369 0.0657 0.0539 0.0454 0.0689 0.0454 0.0674 0.0306 0.0388 0.0712 0.0572 0.0474 0.0486 0.0580
ES14 0.0616 0.0431 0.0507 0.0381 0.0705 0.0350 0.0430 0.0369 0.0653 0.0418 0.0693 0.0421 0.0419 0.0219 0.0441 0.0659 0.0653 0.0385 0.0451
ES15 0.0514 0.0605 0.0601 0.0659 0.0635 0.0465 0.0403 0.0560 0.0587 0.0724 0.0643 0.0722 0.0747 0.0401 0.0347 0.0730 0.0730 0.0520 0.0763
ES16 0.0605 0.0545 0.0663 0.0529 0.0732 0.0608 0.0459 0.0551 0.0700 0.0605 0.0744 0.0596 0.0491 0.0392 0.0585 0.0295 0.0467 0.0299 0.0756
ES17  0.0476 0.0618 0.0601 0.0611 0.0489 0.0380 0.0518 0.0529 0.0431 0.0458 0.0497 0.0419 0.0666 0.0621 0.0573 0.0404 0.0283 0.0361 0.0590
ES18  0.0582 0.0449 0.0536 0.0438 0.0760 0.0402 0.0537 0.0555 0.0580 0.0463 0.0738 0.0563 0.0724 0.0544 0.0738 0.0704 0.0703 0.0250 0.0633
ES19 0.0632 0.0452 0.0662 0.0436 0.0783 0.0406 0.0668 0.0678 0.0720 0.0699 0.0761 0.0616 0.0545 0.0442 0.0542 0.0622 0.0615 0.0648 0.0357
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Table 4. Cont.
Total-Relation matrix T for first component of a fuzzy number (m)
ES1  0.0438 0.0823 0.0771 0.0728 0.0883 0.0742 0.0759 0.0791 0.0715 0.0869 0.0911 0.0673 0.0916 0.0611 0.0907 0.0654 0.0876 0.0618 0.0714
ES2  0.0662 0.0382 0.0531 0.0570 0.0659 0.0558 0.0696 0.0569 0.0823 0.0720 0.0857 0.0623 0.0854 0.0564 0.0852 0.0611 0.0827 0.0565 0.0848
ES3  0.0753 0.0631 0.0441 0.0605 0.0806 0.0598 0.0836 0.0704 0.0768 0.0868 0.0800 0.0851 0.0792 0.0807 0.0788 0.0859 0.0767 0.0603 0.0801
ES4  0.0831 0.0636 0.0660 0.0396 0.0915 0.0602 0.0754 0.0689 0.0773 0.0828 0.0908 0.0771 0.0891 0.0580 0.0885 0.0759 0.0726 0.0705 0.0895
ES5 0.0671 0.0686 0.0572 0.0637 0.0400 0.0630 0.0659 0.0542 0.0582 0.0603 0.0805 0.0677 0.0615 0.0530 0.0615 0.0578 0.0617 0.0541 0.0619
ES6  0.0848 0.0746 0.0859 0.0706 0.0803 0.0379 0.0636 0.0617 0.0774 0.0786 0.0800 0.0871 0.0901 0.0599 0.0881 0.0694 0.0689 0.0604 0.0871
ES7  0.0580 0.0584 0.0702 0.0564 0.0748 0.0653 0.0371 0.0671 0.0608 0.0718 0.0707 0.0626 0.0791 0.0572 0.0838 0.0610 0.0815 0.0565 0.0730
ES8  0.0876 0.0753 0.0678 0.0725 0.0940 0.0693 0.0628 0.0420 0.0792 0.0893 0.0807 0.0683 0.0875 0.0825 0.0814 0.0882 0.0845 0.0803 0.0901
ES9  0.0749 0.0817 0.0865 0.0611 0.0911 0.0600 0.0642 0.0518 0.0456 0.0771 0.0910 0.0878 0.0909 0.0712 0.0888 0.0784 0.0875 0.0714 0.0721
ES10  0.0589 0.0808 0.0742 0.0781 0.0790 0.0782 0.0819 0.0592 0.0852 0.0431 0.0785 0.0747 0.0676 0.0656 0.0671 0.0707 0.0645 0.0543 0.0853
ES11  0.0730 0.0703 0.0750 0.0603 0.0846 0.0679 0.0669 0.0601 0.0646 0.0646 0.0465 0.0850 0.0877 0.0683 0.0786 0.0739 0.0590 0.0751 0.0856
ES12  0.0599 0.0572 0.0573 0.0541 0.0583 0.0538 0.0594 0.0763 0.0806 0.0602 0.0630 0.0383 0.0732 0.0653 0.0725 0.0685 0.0722 0.0647 0.0728
ES13  0.0655 0.0633 0.0830 0.0583 0.0857 0.0576 0.0815 0.0697 0.0646 0.0847 0.0669 0.0842 0.0450 0.0580 0.0865 0.0734 0.0606 0.0674 0.0722
ES14  0.0797 0.0610 0.0666 0.0575 0.0854 0.0553 0.0581 0.0563 0.0812 0.0609 0.0852 0.0609 0.0641 0.0344 0.0633 0.0803 0.0815 0.0491 0.0642
ES15 0.0681 0.0775 0.0799 0.0824 0.0817 0.0681 0.0630 0.0739 0.0793 0.0894 0.0825 0.0892 0.0924 0.0622 0.0499 0.0882 0.0886 0.0732 0.0906
ES16  0.0840 0.0720 0.0829 0.0698 0.0892 0.0780 0.0636 0.0718 0.0859 0.0775 0.0904 0.0766 0.0694 0.0598 0.0787 0.0435 0.0658 0.0506 0.0890
ES17  0.0631 0.0775 0.0783 0.0760 0.0704 0.0557 0.0695 0.0675 0.0639 0.0638 0.0665 0.0621 0.0859 0.0773 0.0752 0.0619 0.0414 0.0561 0.0749
ES18 0.0641 0.0655 0.0713 0.0616 0.0898 0.0604 0.0714 0.0720 0.0758 0.0659 0.0884 0.0748 0.0868 0.0702 0.0888 0.0856 0.0862 0.0378 0.0785
ES19 0.0863 0.0655 0.0880 0.0624 0.0935 0.0631 0.0845 0.0838 0.0887 0.0878 0.0929 0.0799 0.0747 0.0640 0.0740 0.0792 0.0791 0.0820 0.0494
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Table 4. Cont.
Total-Relation matrix T for first component of a fuzzy number (u)
ES1  0.0883 0.1315 0.1310 0.1290 0.1371 0.1240 0.1313 0.1304 0.1238 0.1335 0.1370 0.1238 0.1356 0.1182 0.1368 0.1209 0.1316 0.1168 0.1237
ES2  0.1180 0.0845 0.1073 0.1136 0.1215 0.1121 0.1260 0.1137 0.1285 0.1281 0.1314 0.1185 0.1299 0.1131 0.1312 0.1183 0.1264 0.1114 0.1303
ES3  0.1332 0.1246 0.0926 0.1218 0.1405 0.1202 0.1342 0.1322 0.1372 0.1373 0.1403 0.1365 0.1385 0.1314 0.1400 0.1370 0.1349 0.1169 0.1390
ES4 0.1303 0.1231 0.1228 0.0887 0.1390 0.1189 0.1329 0.1282 0.1358 0.1352 0.1388 0.1359 0.1371 0.1178 0.1379 0.1356 0.1266 0.1281 0.1376
ES5  0.1254 0.1266 0.1160 0.1242 0.0901 0.1227 0.1264 0.1155 0.1190 0.1210 0.1312 0.1283 0.1204 0.1134 0.1223 0.1192 0.1188 0.1123 0.1220
ES6  0.1313 0.1326 0.1322 0.1299 0.1383 0.0865 0.1224 0.1214 0.1353 0.1354 0.1383 0.1354 0.1366 0.1193 0.1373 0.1277 0.1213 0.1181 0.1363
ES7 01150 0.1190 0.1281 0.1165 0.1347 0.1250 0.0870 0.1281 0.1215 0.1317 0.1291 0.1222 0.1328 0.1166 0.1341 0.1220 0.1292 0.1146 0.1327
ES8 01334 0.1342 0.1208 0.1315 0.1407 0.1276 0.1217 0.0917 0.1375 0.1374 0.1379 0.1273 0.1387 0.1314 0.1401 0.1371 0.1349 0.1293 0.1384
ES9  0.1285 0.1307 0.1317 0.1192 0.1376 0.1176 0.1218 0.1108 0.0929 0.1345 0.1376 0.1347 0.1359 0.1290 0.1366 0.1344 0.1322 0.1265 0.1276
ES10 0.1154 0.1305 0.1301 0.1278 0.1362 0.1264 0.1303 0.1192 0.1333 0.0915 0.1362 0.1332 0.1243 0.1248 0.1257 0.1303 0.1207 0.1105 0.1350
ES11 01298 0.1309 0.1306 0.1209 0.1361 0.1274 0.1240 0.1207 0.1244 0.1243 0.0956 0.1343 0.1356 0.1284 0.1370 0.1341 0.1159 0.1257 0.1353
ES12  0.1167 0.1173 0.1137 0.1141 0.1168 0.1132 0.1196 0.1267 0.1302 0.1199 0.1227 0.0881 0.1313 0.1247 0.1326 0.1286 0.1280 0.1227 0.1316
ES13  0.1162 0.1197 0.1280 0.1159 0.1334 0.1144 0.1282 0.1277 0.1218 0.1311 0.1238 0.1311 0.0905 0.1154 0.1336 0.1309 0.1141 0.1234 0.1261
ES14 01236 0.1160 0.1176 0.1129 0.1298 0.1107 0.1142 0.1134 0.1269 0.1169 0.1298 0.1168 0.1181 0.0800 0.1194 0.1266 0.1248 0.1034 0.1197
ES15 01229 0.1350 0.1345 0.1323 0.1395 0.1238 0.1220 0.1339 0.1379 0.1378 0.1408 0.1378 0.1391 0.1219 0.0988 0.1376 0.1352 0.1298 0.1397
ES16 01305 0.1311 0.1305 0.1291 0.1379 0.1274 0.1224 0.1310 0.1350 0.1351 0.1380 0.1349 0.1262 0.1190 0.1375 0.0928 0.1224 0.1082 0.1366
ES17 01194 0.1279 0.1263 0.1255 0.1263 0.1144 0.1279 0.1273 0.1227 0.1221 0.1248 0.1210 0.1327 0.1257 0.1339 0.1211 0.0875 0.1137 0.1330
ES18 0.1181 0.1234 0.1251 0.1201 0.1379 0.1185 0.1304 0.1312 0.1335 0.1247 0.1377 0.1334 0.1348 0.1292 0.1375 0.1347 0.1325 0.0853 0.1366
ES19 0.1316 0.1229 0.1326 0.1203 0.1388 0.1194 0.1320 0.1320 0.1356 0.1349 0.1386 0.1355 0.1282 0.1213 0.1297 0.1353 0.1334 0.1276 0.0956
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A stronger causal signal is evident in groundwater depletion (ES6); this showsa D — R of
+0.223. As a mild but sustained driver, it affects other stressors such as salinization (ES16),
vegetation stress, and crop yield instability. Its persistent pressure on ecological and human
systems highlights the need for sustainable water management. Closely related, heatwaves
(ES8) show the strongest influence in this group with a D — R value of +0.240, qualifying as
a moderate cause. Their wide-ranging impacts from labor productivity loss to increased
energy demand and health risks underline the urgency for adaptive infrastructure and early
warning systems. Pest and disease outbreaks (ES9), though traditionally seen as effects,
display a slight but notable causal role (D — R +0.034), especially in agricultural systems
where ecological imbalances are present. Likewise, air pollution (ES14) (D — R +0.040)
contributes indirectly to ecosystem degradation and climate stress. Both exhibit weak
causal profiles, but their influence should not be underestimated, particularly in urban and
peri-urban settings. Based on the results, the most influential stressors are shown in Table 5.

Table 5. Category A: most influential stressors.

Code Name D — R (m) Interpretation
ES1 Temperature Rise +0.096 Weak Cause
ES3 Drought Frequency +0.044 Weak Cause
ES4 Flood Events +0.205 Mild Cause
ES6 Groundwater Depletion +0.223 Mild Cause
ES8 Heatwaves +0.240 Moderate Cause
ES9 Pest and Disease Outbreaks +0.034 Weak Cause

ES14 Air Pollution +0.040 Weak Cause

ES16 Salinization/ Alkalinity +0.031 Weak Cause

ES18 Digital Infrastructure Gaps +0.213 Moderate Cause

Salinization and alkalinity (ES16), with a D — R of +0.031, also rank as a weak cause,
often emerging from water misuse and poor drainage. Although chronic in nature, their
influence is persistent, especially in degrading soil productivity. Finally, digital infrastruc-
ture gaps (ES18) are prominent with a D — R of +0.213, marking a moderate and somewhat
non-traditional cause in the environmental domain. These gaps hinder access to early
warning systems, climate-smart agriculture, and efficient resource use; thereby, weakening
the resilience of the entire food and environmental supply chains. Based on the results,
a subset of environmental stressors that primarily function as outcomes or consequences
of systemic pressures within the environmental system are explored, as shown in Table 6.
These stressors, categorized under the effect group, are characterized by negative D — R
values, indicating that they are more influenced by other stressors rather than exerting
influence themselves.

Based on the results of the Fuzzy DEMATEL analysis, a subset of environmental
stressors is identified that primarily function as outcomes or consequences of systemic
pressures within the environmental system. These stressors, categorized under the effect
group, are characterized by negative D — R values, indicating that they are more influenced
by other stressors rather than exerting influence themselves. Soil degradation (ES5) exhibits
a D — R value of —0.366, marking it as a moderate effect and one of the most heavily
impacted stressors in the system. Soil degradation is typically the result of cumulative
upstream drivers such as droughts, poor land management, salinization, and extreme
weather patterns. Its high sensitivity to multiple influences highlights its role as a critical
indicator of environmental health and productivity, particularly in agricultural and rural
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landscapes. Vegetation loss (ES11) and extreme weather events (ES12) also emerge as
moderately affected stressors, with D — R values of —0.164 and —0.184, respectively.
Vegetation loss reflects a direct consequence of interacting stressors such as temperature rise,
pest outbreaks, and groundwater depletion, which jointly weaken ecosystems. Similarly,
extreme weather events represent the culmination of climate variability and atmospheric
instability driven by broader systemic imbalances such as heatwaves and land use change.
Sea level rise (ES13), another moderately influenced stressor (D — R —0.173), is shaped
by long-term changes such as global temperature increase and melting ice masses. While
it does not significantly affect other stressors in this framework, its implications, such as
flooding and coastal displacement, are far-reaching and often irreversible. Cold spells
(ES17) also show a moderate effect role (D — R —0.115), indicating their sensitivity to
overarching climatic dynamics rather than being major drivers themselves. In contrast,
land use change/urban sprawl (ES10) is characterized by a weak effect role witha D — R
value of —0.057. While influenced by drivers such as population pressure, economic
development, and digital infrastructure gaps, it also has the potential to influence other
stressors in return, such as vegetation loss and flood risk, suggesting its dual position in
the network.

Table 6. B. Most influenced stressors (effect group, D — R < 0).

Code Name D — R (m) Interpretation
ES5 Soil Degradation —0.366 Moderate Effect
ES10 Land Use Change/Urban Sprawl —0.057 Weak Effect
ES11 Vegetation Loss —0.164 Moderate Effect
ES12 Extreme Weather Events —0.184 Moderate Effect
ES13 Sea Level Rise —0.173 Moderate Effect
ES17 Cold Spells —0.115 Moderate Effect
ES19 Transport and Energy Disruption +0.006 Balanced

Interestingly, transport and energy disruption (ES19) displays a nearly neutral D — R
value of +0.006, placing it in a balanced position between a cause and an effect. This
suggests a reciprocal interaction where disruptions in transport and energy systems are
both triggered by and contributors to other environmental stressors like extreme weather
or infrastructure gaps. Fuzzy DEMATEL also highlights a core group of environmental
stressors with the highest D + R values, marking them as the most central and systemically
prominent elements within the environmental network. These stressors are deeply em-
bedded in the system through both the influence they exert and the feedback they receive,
making them critical leverage points for policy intervention and strategic planning. The
stressors are shown in Table 7.

Table 7. Most prominent stressors.

Code Name D + R (m) Role

ES15 Forest Fires 2.961 Central and Balanced
ES19 Transport and Energy Disruption 2.951 Central and Balanced
ES11 Vegetation Loss 2.858 Influenced Prominence
ES16 Salinization/ Alkalinity 2.767 Strong Influence
ES9 Pest and Disease Outbreaks 2.832 Strongly Involved
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D + R (Prominence / Centrality)

Forest fires (ES15) are projected as the most central and balanced stressor with a D + R
value of 2.961. This indicates that forest fires are both heavily influenced by other stressors,
such as heatwaves, droughts, and vegetation loss, and exert substantial influence in return
by accelerating air pollution, biodiversity loss, and land degradation. Its central and
balanced nature means that it both shapes and reflects systemic vulnerabilities, requiring
integrated fire management, land use planning, and climate adaptation policies. Transport
and energy disruption (ES19), with a D + R value of 2.951, is also categorized as central and
balanced. This stressor captures a pivotal position in the infrastructure/climate nexus. It is
influenced by extreme weather, digital infrastructure gaps, and sea level rise, while in turn
disrupting supply chains, emergency response, and mobility.

Vegetation loss (ES11), with a D + R value of 2.858, signifies a case of influenced
prominence. Although it is more affected than being a cause, its centrality reflects its
interlinkage with several other drivers and consequences, ranging from drought, land use
change to carbon sequestration loss. Salinization and alkalinity (ES16), witha D + R of 2.767,
is considered as a strong influencer. It has a substantial role in shaping soil degradation,
groundwater stress, and agricultural output, while being moderately affected itself. Its
prominence in the network suggests that soil and water management strategies, particularly
in arid and semi-arid zones, are essential for mitigating downstream impacts. Lastly, pest
and disease outbreaks (ES9) hold a D + R value of 2.832, reflecting strong involvement in
both causal and effect pathways. Despite its relatively low D — R (a weak cause), its high
total interaction indicates that it is systemically embedded, influenced by climate change,
vegetation patterns, and human activity, while also exacerbating agricultural and ecological
vulnerabilities. Integrated pest management, surveillance, and climate-smart agricultural
practices become vital here.

The visualization showing the strategic classification of environmental stressors across
five quadrants based on their D — R (causal strength) and D + R (centrality /prominence)
values is shown in Figure 2. Each stressor is plotted and grouped according to its strategic
role in the system.
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4.1. Environmental Stressors Index (ESI)

The ESI is proposed using Equations (10)—(12); this aims to quantify vulnerability of
agricultural systems due to environmental stressors. This index assesses how stressors will
evolve under RCP 4.5 (moderate scenario) and RCP 8.5 (high emissions scenario) up to
2100. Based on the Fuzzy DEMATEL results, the most influential and prominent stressors
ES3, ES8, ES9, ES11, ES14, ES16, ES18, and ES19 are selected. The 19 environmental
stressors to the 9 most influential are selected using a threshold based on DEMATEL
centrality (D + R), where stressors exceeding the sample mean and belonging to the top
quantile of systemic prominence are retained. A stability test with +10% perturbation
of weights confirms the robustness of this selection. The top nine stressors are invariant
in >95% of perturbations, with median Jaccard > 0.90 and median Spearman’s p > 0.90,
indicating high robustness of the selection to £10% weight uncertainty. The expert panel
comprises 15 specialists (Table 3) with 5-15 years of relevant experience. A Delphi method
is employed to consider experts’ judgment; a consensus coefficient of Kendall’'s W = 0.71 is
obtained, indicating substantial agreement. Further, pairwise comparisons are expressed
as fuzzy triplets (Table 2) and defuzzified using the Center of Area (COA) method to
derive crisp weights. This framework ensures that the selection of indicators and weights
is auditable, evidence-based, and replicable. Three regions in Uttarakhand are selected as
samples to represent distinct agro-climatic zones: Region A, Rudraprayag (central /higher-
altitude, hotspot of extreme events); Region B, Udham Singh Nagar (Rudrapur) (terai
region, groundwater-stressed); Region C, Almora (mid-Himalaya, rainfall-deficient).

The data shown in Table 8 is obtained from the Climate Atlas of India, Center for Study
of Science, Technology, and Policy (CSTEP) Annual Report, 2022, which provides district-
level climate variables across India. The time window considered is a short-term period of
the 2030s (2021-2050) and is compared with the climate of the near past historical period
(1990-2019) at a district level, with a spatial resolution of 1 km x 1 km grid-based estimates.
Missing values are addressed through temporal averaging to maintain data consistency.
Normalization ensures consistent directionality: indicators with a positive influence are
scaled directly, while those with a negative influence (e.g., extreme temperature anomalies)
are reverse-scaled to align interpretation across the dataset.

Table 8. Region-wise stressors.

ESé:
. ES1: Tk ES3: Drought ES4: Flood ESS8: ES9: Pest ES16: ES18:
Region Rise (irg)P D;;Jsug Even:so Gg)el;r;ﬁ‘:r;t)er Days Indeis ES14: AQI Salinity (EC)  Internet (%)
Rudraprayag (A) 15 30 4 7.0 10 0.7 110 2.5 55
Udham Singh
N;gIZr (1]‘31)‘5 1.2 20 2 9.5 12 0.9 140 3.8 35
Almora (C) 1.0 25 3 55 8 0.8 100 2.0 60
Source: Climate Atlas of India, Center for Study of Science, Technology, and Policy annual report.
Based on Equations (10) and (11), a normalized matrix is developed as shown in Table 9.
Table 9. Normalized table.
Region ES1 ES3 ES4 ESe6 ES8 ES9 ES14 ES16 ES18
Rudraprayag (A) 1.00 1.00 1.00 0.375 0.50 0.00 0.25 0.28 0.80
Udham Singh Nagar (B) 0.40 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00
Almora (C) 0.00 0.50 0.50 0.00 0.00 0.50 0.00 0.00 1.00
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The results obtained from normalization show that Rudraprayag shows high vulnera-
bility to climate extremes (heatwaves, floods, temperature, drought) but better infrastruc-
ture access whereas Udham Singh Nagar scores high across most stressors (water stress,
air pollution, salinity), reflecting a multi-faceted vulnerability profile. Almora demon-
strates low exposure except moderate drought and connectivity stress, reflective of its
mid-Himalayan character. Using Equations (11) and (12), ESI scores are calculated and
shown in Table 10.

Table 10. ESI scores for each region.

Region ESI Score Interpretation
Very High Vulnerability (climate-driven
Rudraprayag (A) 0-755 and moderate infrastructure gaps)
. High Vulnerability (resource and
Udham Singh Nagar (B) 0715 pollution stressors dominate)
Almora (C) 0435 Moderate Vulnerability (limited climate

extremes, but connectivity critical)

The ESI scores are visualized in Figure 3.
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Figure 3. Choropleth map visualizes the ESI.
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The choropleth map visualizes the composite Environmental Stressor Index (ESI)
across three representative regions in Uttarakhand—Rudraprayag, Udham Singh Nagar,
and Almora. The color gradient indicates the intensity of environmental stress, with darker
shades representing higher levels of stress and vulnerability. The main results are detailed
as follows.

(@) Rudraprayag (ESI: 0.755; High Vulnerability)

Rudraprayag, a high-altitude central Himalayan region, shows the highest composite
ESI score. This is due to its exposure to extreme events like floods (ES4), heatwaves (ESS),
and landslide-triggering weather conditions. The Fuzzy DEMATEL results support this by
identifying stressors such as groundwater depletion (ES6) and heatwaves (ES8) as moderate
causes, flood events (ES4) as a mild cause, with forest fires (ES15) and transport/energy
disruption (ES19) as central and balanced stressors. The convergence of high causality and
high prominence of stressors suggests that Rudraprayag is not only highly exposed but is
also a driver node in systemic agricultural vulnerability.

(b) Udham Singh Nagar (ESI: 0.715; Moderate-High Vulnerability)

As a terai region with intensive agriculture, this district faces high stress from ground-
water depletion (ES6) and salinization (ES16). Fuzzy DEMATEL results flag both of these
as causal stressors, indicating that Udham Singh Nagar’s challenges are structural and
anthropogenically driven. The ESI score reflects chronic water stress from unsustainable
irrigation practices, technological gaps (ES18) in managing these risks, and rising air pollu-
tion (ES14) and pest outbreaks (ES9) due to mono-cropping and climate variability. This
makes it a priority area for agri-tech and sustainable water management interventions.

() Almora (ESI: 0.435; Moderate-Low Vulnerability)

A mid-Himalayan region, Almora shows relatively lower composite environmental
stress. However, it remains vulnerable to vegetation loss (ES11), soil degradation (ES5), and
extreme weather events (ES12), all identified as effect stressors in the DEMATEL results.
These stressors are more a consequence of upstream or system-wide causes rather than
internal triggers. Thus, Almora is more reactive than proactive in the environmental stress
network. While immediate vulnerabilities are lower, systemic exposure is still significant,
especially under future climate scenarios (RCP 4.5/8.5).

To reduce the risk of double-counting correlated stressors, we propose an adjustment
in the ESI calculation by introducing a penalty term for collinearity. While the rank
ordering of districts remains broadly stable, with Rudraprayag and Udham Singh Nagar
both emerging as highly stressed, the adjustments slightly increase Rudraprayag’s relative
vulnerability while lowering Almora’s index. This refinement demonstrates that the ESI is
reasonably robust but also highlights the importance of addressing collinearity to avoid
overemphasizing overlapping climate shocks (e.g., drought and flood frequency).

4.2. Simulation for RCP 4.5 and RCP 8.5

For future climate projections, data is obtained from the CMIP6 multi-model ensemble,
incorporating outputs from ten global climate models to reduce model-specific uncertain-
ties. To address systematic bias, quantile mapping is applied against the IMD baseline
climatology (1980-2010) following the ISIMIP protocol, thereby improving the represen-
tation of precipitation and temperature distributions. Land surface and soil parameters
are derived from the Harmonized World Soil Database (HWSD) and MODIS land cover
datasets, with the final datasets downscaled to a 0.25° x 0.25° (~25 km) spatial resolution
aligned with IMD gridded records. All projections are regionally calibrated using IMD his-
torical data for Indian districts, ensuring contextual relevance. These projections under RCP
4.5 and RCP 8.5 provide the climatic drivers for ESI simulations. This study incorporates
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climate stressor projections from CMIP6 multi-model ensembles under RCP 4.5 and RCP 8.5
scenarios. RCP 4.5 represents a stabilization scenario with moderate mitigation, while RCP
8.5 reflects a business-as-usual pathway with high emissions (Reference: Supplementary
Text S1, Tables S1 and S2). ESI Simulation Output for regions under RCP 4.5 and RCP 8.5 is
achieved using min-max normalization shown in Table 11.

Table 11. ESI score RCP 4.5 and 8.5.

Region ESI Score (RCP 4.5) ESI Score (RCP 8.5)
Udham Singh Nagar 0.711 — Very High Vulnerability 0.529 — Moderate Vulnerability
Rudraprayag 0.511 — Moderate Vulnerability 0.740 — Very High Vulnerability
Almora 0.167 — Low Vulnerability 0.133 — Very Low Vulnerability

Region

Rudraprayag (A)

Udham Singh Nagar (B) -

Almora (C) -

Based on the data, a heatmap is made as shown in Figure 4. Environmental stressors
under RCP 4.5 show distinct vulnerability profiles across the three regions. Rudraprayag
(A) shows very high stress levels across most indicators including temperature rise, drought
days, flood events, and moderate stress in groundwater depth and salinity, suggesting
a climate-driven vulnerability pattern. Udham Singh Nagar (B) exhibits maximum nor-
malized values across all stressors, especially for heatwave days, pest index, AQI, and
salinity, indicating critical stress from resource depletion and environmental degradation;
this makes it the most vulnerable region. On the contrary. Almora (C) reflects low to
moderate stress, with relatively better performance in key stressors like AQI, salinity, and
internet access, implying comparatively lower vulnerability, though drought and pest
risks persist. This visualization highlights the need for region-specific climate adaptation
strategies based on dominant environmental stress patterns.
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Figure 4. Environmental stressors under RCP 4.5.

The heatmap under the RCP 8.5 scenario is shown in Figure 5. This reveals an intensi-
fication of environmental stress across regions, with Udham Singh Nagar (B) remaining
under severe vulnerability. The map shows maximum normalized values (1.0) across all
stressors, highlighting compounded stress from climate extremes, environmental degrada-
tion, and poor infrastructure. Rudraprayag (A) also shows very high stress for temperature
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Region

Rudraprayag (A)

Udham Singh Nagar (B)

Almora (C) -

rise, drought, and flood events, with moderate levels for groundwater depth, heatwaves,
and salinity, indicating growing climate-induced pressure. On the contrary, Almora (C)
continues to experience comparatively lower stress, though moderate vulnerability is still
evident for drought, flood, and pest risk. Overall, the RCP 8.5 projection indicates a signifi-
cant amplification of climate stress, particularly in the lowland regions, demanding urgent
adaptive capacity building and mitigation interventions.
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Figure 5. Environmental stressors under RCP 8.5.

To complement the environmental stressor analysis, crop yield models play a critical
role in assessing agricultural vulnerability and food insecurity under climate change scenar-
ios like RCP 4.5 and RCP 8.5. These models integrate climate variables such as temperature
rise, rainfall variability, drought frequency, and heatwaves with crop-specific physiological
responses to estimate yield fluctuations over time. By simulating crop performance under
projected stress conditions, models like Decision Support System for Agrotechnology Trans-
fer (DSSAT) or AquaCrop can identify regions where food production is at risk, supporting
the formulation of targeted adaptation strategies.

This approach provides a quantitative basis to evaluate the impact of climate stress on
food availability, helping to prioritize climate-smart agricultural interventions, enhance
resilience planning, and mitigate food insecurity, especially in ecologically sensitive districts
like Rudraprayag and Udham Singh Nagar.

4.3. Bridging Environmental Stress to Food Supply Chain Insecurity

Ultimately, each environmental stressor, whether biophysical such as soil degradation
or socio-technical such as lack of ICT, cascades into FSC vulnerability. The dual insights
from Fuzzy DEMATEL (causal structure) and ESI (regional intensity) help stakeholders pre-
dict, prevent, and absorb shocks across the entire food system. The impact of environmental
stressors on food supply chain stages is shown in Figure 6.
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Figure 6. Impact of environmental stressors on food supply chain stages.

The results can be validated against historical socio-economic and disaster records.
For example, Rudraprayag has consistently faced recurrent flooding and landslide events
(notably the 2013 Kedarnath floods), which aligns with its high ESI score driven by flood
and groundwater stressors. Udham Singh Nagar, in contrast, has recorded serious air
pollution, irrigation pressures, and groundwater depletion in state monitoring reports,
consistent with its elevated stressor profile from AQ], salinity, and pest index. Almora,
while recording lower overall stress, has experienced recurrent droughts and market access
challenges due to its hilly terrain and limited connectivity, reflecting its ESI score on drought
days and internet penetration. This triangulation with observed losses and vulnerabilities
supports the validity of ESI as a diagnostic tool, while also highlighting district-specific
stress patterns.

As can be seen from the results, Rudraprayag district is vulnerable to environmental
stressors, particularly landslides and flash floods. The current study aligns with [40], in
which deep learning and machine learning models were employed to assess landslide
susceptibility across Uttarakhand, identifying Rudraprayag as a high-risk area due to its
geological and anthropogenic factors. Moreover, ref. [41] applied multi-criteria decision-
making and machine learning techniques for landslide susceptibility evaluation, reinforcing
the district’s vulnerability. Ref. [42] conducted integrated assessments of flash flood risks
in the Upper Ganga Basin, emphasizing that Rudraprayag, alongside Chamoli, experi-
ences recurrent flash floods. Geomorphic studies by [42] underscored the destabilizing
effects of dissected topography and unscientific hill cutting on slope stability. Ref. [42]
identified the Chamoli District of Uttarakhand where Geographical Information System
(GIS)-based susceptibility mapping plays a critical role in identifying vulnerable areas.
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Studies conducted by [40-45] exemplify the application of advanced analytical techniques
to address landslide susceptibility and related soil erosion and water resource management
challenges in Uttarakhand and other areas. Collectively, these studies corroborate the ESI
results and highlight the need for district-specific adaptation strategies focusing on disaster
preparedness, resilient infrastructure, and sustainable land-use planning [14].

Based on the results, the major findings can be summarized as follows. Firstly, the
Environmental Stressor Index (ESI) identifies Udham Singh Nagar as the most consistently
vulnerable district, where compounded stressors including water scarcity, salinity, and air
pollution intensify risks under both RCP 4.5 and 8.5 scenarios. Secondly, Rudraprayag
shows high exposure to floods, droughts, and heatwaves, with vulnerability projected
to intensify under the high-emission pathway. Thirdly, Almora remains relatively less
vulnerable, yet persistent drought and connectivity limitations indicate risks that cannot
be overlooked. These findings suggest significant policy implications such as adaptation
must be district-specific, emphasizing water resource management and pollution control in
Udham Singh Nagar, resilient infrastructure and early warning systems in Rudraprayag,
and drought-resilient cropping in Almora. Broadly, the results highlight the urgency for
integrated climate adaptation policies that combine water management, climate-smart
agriculture, and digital early warning systems to enhance the resilience of food supply
chains at both regional and global levels.

5. Implications

The integration of Fuzzy DEMATEL with a composite ESI provides a holistic, systems-
based approach to assess the interconnected nature of climate and environmental stressors
impacting agricultural stability. The implications of this dual-framework are extensive,
enabling evidence-based decision-making across scales from grassroot agripreneurs to
policymakers. This framework not only quantifies region-wise vulnerability but also
discloses causal hierarchies among stressors. The implications, particularly in securing
food supply chains under current and projected climate scenarios (RCP 4.5 and RCP 8.5),
are significant for policymakers, agripreneurs, planners, and researchers.

(@) Integrating ESI into Climate-Smart Agriculture (CSA) Policies

The current Climate-Smart Agriculture (CSA) policies are general in nature. The
integration of Fuzzy DEMATEL and ESI enable policymakers to design decentralized,
targeted CSA policies which are more relevant to particular conditions of each region. For
example, regions with stressors like groundwater depletion and salinization as root causes
(e.g., Udham Singh Nagar) should have tailored schemes promoting micro-irrigation,
water budgeting, and soil health monitoring. This leads to smarter subsidy allocation and
performance-based policy design under schemes such as PMKSY or MGNREGA.

(b) Precision Targeting of Climate Interventions

One of the most significant policy-level implications lies in the capacity to prioritize
geographic regions based on composite stressor vulnerability. With ESI quantifying region-
specific vulnerability and Fuzzy DEMATEL revealing causal linkages among stressors,
governments can triage resources more efficiently. For instance, Rudraprayag, with a
high ESI score and multiple cause-prominent stressors, demands immediate investment in
flood prevention infrastructure, early warning systems for heatwaves, and reforestation
initiatives. Conversely, Almora, with lower vulnerability and more effect-based stressors,
may benefit more from long-term ecological restoration.

(c) Targeted Mitigation of Production Disruptors

Regions like Rudraprayag, with high ESI scores, are exposed to intense environmental
stressors such as extreme weather events (ES1), floods (ES4), and heatwaves (ES3). These
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stressors disrupt sowing windows, reduce crop yields, and degrade soil quality, threatening
the very first node of the food supply chain, i.e., agricultural production. Policies must
focus on the specific needs of the region. They must include prioritizing region-specific
crop insurance and resilient seed varieties, launching district-level early warning systems
and emergency procurement measures to buffer FSC shocks, as well as enhancement for
farmer coverage under schemes like PMFBY with dynamic premiums based on ESI severity.

(d) Strengthening Infrastructure at Processing and Storage Nodes

High-impact stressors such as infrastructure damage (ES19) and land degradation
(ES5), identified as effect-prominent in hilly districts, cause delays and losses in post-harvest
processing and storage—critical mid-chain operations. Government programs such as
Pradhan Mantri Kisan SAMPADA Yojana (PMKSY) must integrate ESI scores to (a) locate
processing hubs in lower-stress areas and (b) climate-proof storage infrastructure (cold
chains, silos) using stressor-informed designs.

(e) Tailored Agribusiness Models for Regional Risk Profiles

The ESI framework offers agripreneurs critical foresight to customize inputs, services,
and logistics. At the outset, in Udham Singh Nagar, where groundwater depletion (ES2)
and salinization (ES6) dominate, startups can deploy soil-moisture sensors, desalinization
kits, and promote aquifer recharge solutions. In Almora, mid-altitude farming is affected by
rainfall variability (ES7) and pest outbreaks (ES9). Agribusinesses can introduce mobile pest
advisory apps, rain-fed crop bundles, biofertilizer dissemination platforms, and adaptive
land-use planning.

(f) Institutionalizing Environmental Intelligence Systems

Policymakers must institutionalize stressor monitoring through national dashboards
and environmental intelligence systems. Integration of remote sensing, climate models,
and Al analytics into public decision-making can facilitate real-time responsiveness to
cause-prominent stressors like groundwater depletion or forest fires. Such systems should
be made transparent and publicly accessible to enhance accountability.

(g) Public Communication and Behavioral Change Campaigns

The cause-peripheral and effect-peripheral stressors such as air pollution (ES14), sea-
level rise (ES13), and cold spells (ES17) often receive less attention due to their lower
centrality. However, their localized impact can be severe. Policymakers should deploy
targeted communication strategies such as radio broadcasts, school curricula, and mobile
advisories, to raise awareness and influence community behavior in these areas. The
quadrant-based interpretation of environmental stressors provides a high-resolution, ac-
tionable lens for policy formulation. It moves beyond generic climate risk frameworks and
enables adaptive governance rooted in data and systems thinking. Policymakers who align
their strategies with these insights can build more resilient, equitable, and sustainable food
systems for future generations.

Based on the ESI, actionable policies can be mapped to tiered thresholds and tailored
to district-specific profiles. Udham Singh Nagar (high vulnerability, ESI > 0.70) requires ur-
gent water resource management through aquifer recharge, strict groundwater regulation,
and micro-irrigation, alongside air pollution control and residue management under the
National Clean Air Programme; there needs to be promotion of heat- and salinity-tolerant
crop varieties. Rudraprayag (high-moderate vulnerability, ESI ~ 0.60-0.70) demands in-
vestments in flood-resilient infrastructure and digital early warning systems, expanded
PMFBY coverage with ESI-based premiums, and ecosystem restoration for slope stabiliza-
tion. Almora (moderate-low vulnerability, ESI < 0.50) should prioritize drought-resilient
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cropping systems, integrated pest management, and improvements in cold chain connec-
tivity to safeguard post-harvest processes.

For policy implications across key domains, this study underscores targeted pathways.
In agriculture, there is a need to promote climate-resilient crops, precision farming, and
dynamic insurance schemes. In water resources, there is a need to strengthen groundwater
management, micro-irrigation, and watershed control. In biodiversity and ecosystems,
there must be expanding afforestation, agroforestry, and digital early warning systems.
In infrastructure and agribusiness, climate-proofing cold chains, strategically locating
processing hubs, and fostering region-specific agripreneurship models are required. In
governance, it is necessary to develop real-time environmental intelligence dashboards,
thus ensuring transparency and raising public awareness. Collectively, these structured
strategies operationalize the research objectives (RO1-RO3), align with existing national
schemes, and advance India’s commitments under the Paris Agreement and SDGs, while
offering adaptable lessons for other climate-sensitive regions globally.

6. Conclusions, Limitations, and Future Directions for Research

This study provides clear evidence of how increasing climate variability, driven by
interconnected environmental stressors, is restructuring food security in vulnerable regions
of India. Using the Fuzzy DEMATEL method, it classifies the most influential stressors
and constructs a region-specific Environmental Stressor Index (ESI), offering a robust
framework to quantify and compare district-level vulnerabilities. The comparative analysis
of Rudraprayag, Udham Singh Nagar, and Almora underscores the heterogeneous nature
of risks, with exposures spanning climate extremes, hydrological challenges, and pollution
pressures. Projections under RCP 4.5 and 8.5 scenarios highlight the urgency of regionally
tailored strategies, with Udham Singh Nagar emerging as a critical hotspot due to its
multifactorial vulnerabilities. The novelty of this research lies in its integration of causal
stressor analysis with crop yield simulations, advancing a systems-level approach that
directly links environmental risks to agricultural productivity outcomes. The current
study advances the frontier of climate—food security research and provides a transferable
framework for other climate-sensitive regions. Continued investigation in this area is vital
to strengthen adaptive capacity, safeguard food systems, and support India’s commitments
under the Paris Agreement and the SDGs.

Despite its comprehensive framework, this study has some limitations. Firstly, the
environmental stressors considered are primarily based on existing datasets, which may
not fully capture localized microclimatic variations socio-environmental dynamics. Sec-
ondly, while Fuzzy DEMATEL effectively models causal relationships among stressors,
the analysis does not account for dynamic feedback loops or temporal shifts in stressor
influence over time. While the ESI highlights regions with higher composite vulnerability,
it does not capture how stress intensities might evolve through feedback or interdependent
dynamics over time. Future research could close this gap by extending the index with
network-based propagation mechanisms or dynamic modeling approaches. This study
applies the ESI framework to three districts in Uttarakhand (Rudraprayag, Udham Singh
Nagar, and Almora); the selection is intended primarily as a methodological demonstration
and exploratory case study. More extensive datasets and additional districts could provide
a more comprehensive assessment of food system vulnerability. Also, this study has an
absence of explicit uncertainty quantification and robustness analysis. While stability
checks with +10% perturbation of weights are conducted, the analysis does not capture the
full range of uncertainties arising from expert disagreement, indicator measurement error,
scenario assumptions, or model structural limitations. Future work can therefore extend
the framework through Monte Carlo and bootstrap simulations or sensitivity analysis to
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evaluate the stability of the ESI. Additionally, the simulation-based crop yield assessments
are sensitive to model parameters and may not fully represent future adaptation responses
from farming communities.

Future research should explore integrating temporal models and feedback systems to
capture evolving stressor interactions under climate uncertainty. Expanding the geographic
scope beyond Uttarakhand and including more granular data (e.g., at block or village level)
would enhance spatial precision. Further, incorporating socio-economic resilience indica-
tors including livelihood diversification, adaptive capacity, and governance effectiveness
will provide a more holistic understanding of food system vulnerabilities.
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