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Abstract: Due to rapid urbanization and population growth, identification and management of
illegal dump sites has been a global challenge. In this study, satellite imagery and geographic
information system were used to map potential illegal dump sites (PIDS). An original analytical
approach was developed to identify PIDS using a set of remote sensing indices and vector files.
The Network Analysis tool was used to prioritize PIDS considering driving distance between PIDS
and neighboring populated points. A total of five variables (Landfills, LST, HCHO, Highways, and
EVI) were considered. A study area in Saskatchewan, Canada, was selected, and the identified
PIDS account for about 37.3% of the total area. Road network intensity and accessibility appear
important to the occurrence of PIDS. Overall road densities in identified PIDS ranged from 0.098 to
0.251 km/km2. All five variables have observable effects on the occurrence of PIDS; however, LST
and highways are recommended for future studies due to their higher membership grade and spatial
sensitivity. The combination of multiple remote sensing indices and network analysis on PIDS
prioritization is advantageous. The proposed PIDS mapping and prioritization method can be easily
employed elsewhere.

Keywords: illegal dump sites; remote sensing; satellite imagery; geographic information system;
network analysis; municipal solid waste; waste management system

1. Introduction
1.1. Literature Review

The growing number of illegal dump sites is widely recognized as a global chal-
lenge [1–3]. Rapid urbanization and population growth were identified as some of the
contributing factors to the occurrence of illegal dump sites [4]. Safety and environmental
issues related to illegal dump sites have arisen and been reported in different countries [5].
For example, a Malaysian study showed that around 1000 students living in proximity
of an illegal dumpsite filled with chemical wastes developed symptoms of respiratory
deficiencies [6]. In addition to adverse human health effects, environmental issues such
as the leachate generation and greenhouse gas emissions are commonly observed [1,2].
Limoli et al. [7] reported that illegal dumpsites are also responsible for the aesthetic deterio-
ration of the landcover, leading to property price drop in the surrounding areas.

A substantial financial resource is often required to identify illegal dump sites and to
remediate the adverse health and environmental impacts of these sites [8,9]. According
to Ichinose and Yamamoto [10], UK Environmental Agency estimated the total cost of
identifying and remediating illegal dumpsites in UK exceeds 100 million pounds annually.
Similarly, it is estimated that the management and treatment costs for 69 illegal dump sites
in Japan cost around USD 40 million [11]. As a result, any new approach that minimizes
the associated identification and surveillance costs of illegal dump sites would be highly
beneficial to environmental governance [12].
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A better understanding of the environmental footprints from illegal dumpsites is
required to develop new identification, monitoring, prioritization, and management pro-
cesses. Remote sensing (RS) and geographic information system (GIS) are increasingly
common to indirectly evaluate and monitor environmental anomalies, particularly in
different aspects of solid waste management [13–15]. The following factors are used by
researchers to identify potential illegal dump sites (PIDS): elevated land surface tempera-
ture [4,16,17], disturbed vegetation cover [4,18], increased population density and anthro-
pogenic activities [8,19,20], and developed road network accessibility [1,3,21]. Multi-criteria
decision-making (MCDM) tools are frequently used to integrate multiple factors to identify
PIDS [3,22,23]. Seror and Portnov [8] mapped probable illegal construction and demolition
waste sites in Haifa district, Israel, using factors such as proximity to the main roads and
forest lands, presence of urban areas, and attributes of neighboring ravines such as slope
and depth. Similarly, Karimi et al. [3] integrated the length of highways and railways,
location of landfills, modified soil adjusted vegetation index, and land surface temperature
(LST) to map locations of probable illegal dump sites in Saskatchewan, Canada.

None of the previous studies have prioritized PIDS based on traveling time between
the waste generation sites and the disposal sites using GIS Network Analysis. If not
properly disposed of, municipal solid waste typically travels a relatively short driving
distance before being illegally dumped [24,25]. For example, Mangizvo [26] reported that
the majority of unauthorized dump sites in the Midlands Province, Zimbabwe, are located
within populated areas where proper solid waste collection system is not provided. Similar
spatial distribution characteristics of illegal dump sites are also observed in Poland [1],
and Israel [8].Thus, prioritizing PIDS using traveling time from GIS Network Analysis
is advantageous from a practical point of view, helping us to better identify and manage
the PIDS.

1.2. Objectives and Novelty

The United States’ National Aeronautics and Space Administration (NASA) nighttime
light (NTL) satellite imagery, formaldehyde Total Column (HCHO) retrieved from the
Aura Ozone Monitoring Instrument (OMI), Enhanced Vegetation Index (EVI), and Land
Surface Temperature (LST) collected from MODerate resolution Imaging Spectroradiometer
(MODIS) are commonly adopted in environmental studies and are adopted in this study.
Discussion on the use of these remote sensing indices is provided in Section 2. The
objectives of the current study are to (i) develop an original analytical approach to map
PIDS using a new set of remote sensing indices (e.g., NASA NTL, OMI HCHO, MODIS
EVI, and MODIS LST) and vector files (e.g., location of active landfills and road network)
and (ii) prioritize PIDS in the study area considering neighboring populated points and
GIS Network Analysis.

Karimi et al. [3] performed some pioneering work on PIDS detection in Saskatchewan,
Canada, using nighttime light imagery. Their study however did not prioritize the identified
PIDS using travel time of the waste generator and the area coverage of the disposal sites.
Most of the waste studies have applied GIS tools to solve the vehicle routing program
and to optimize the waste collection process [27,28]. The use of traveling time of waste
generator to prioritize PIDS is original, and the authors are not aware of any published
work on this. It is hypothesized that the use of multiple remote sensing indices and GIS
Network Analysis on PIDS prioritization are more appropriate form a practical standpoint.
A study area in Canada was selected in this study; however, the proposed PIDS mapping
and prioritization method can be easily employed elsewhere, as remote sensing satellite
imagery is freely available globally.

2. Materials and Methods

Compared with other industrialized nations, Canadians generate more solid waste
and recycle less [29–31]. Improper management of solid waste and illegal dumping ac-
tivities were observed on prairie lands and remote areas of Canada. Keske et al. [32]
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reported unauthorized waste dumping and open burning as common practices in the
northern territories of Canada. Illegal dump sites are also identified as a major pollution
source in many indigenous communities in the prairies [33]. In this study, Division 11 in
Saskatchewan, Canada, was selected as the study area. Division 11 is home to over one-fifth
of Saskatchewan’s population and has an area over 17,400 km2.

An original analytical approach using a combination of satellite imagery and GIS
Network Analysis was developed. The work plan of the study is shown in Figure 1.
Details on the region of interest selection, data collection and analysis, map extraction and
implications are separately discussed in Section 2.1, Section 2.2, and Section 2.3, respectively.
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Figure 1. Workflow of current study including regions of interest selection, data collection and
analysis, and map extraction and implications.

2.1. Region of Interest

Unauthorized dumping activities were frequently reported in northern and central
Saskatchewan and Alberta [32,33]. Therefore, Division 11 in central Saskatchewan is
selected, as shown in Figure 2. Division 11 has a population over 326,000, and there are
four active landfills. The City of Saskatoon, the most populated city in the province with
over 266,000 people (or approximately 23% of the province’s population), is located near
the northwestern corner of the division. Further details about the study area are shown
in Table 1.
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Table 1. Details of the study area.

Characteristics of Division 11

Total population Over 326,000
Number of identified major populated points 21

Number of active landfills 4
Division’s area (km2) 17,416.7

Length of highways (km) 1783.7
Road density = length of highways/division area, (km/km2) 0.10

2.2. Data Collection and Analysis
2.2.1. Active Landfills and Road Network (Vector Files)

The presence of active landfills and accessibility to road networks are considered
decisive factors in the occurrence and the scale of illegal dump sites [3,8,19]. As such, both
of them are considered in the present study. The location of active landfills, both authorized
and unauthorized, was collected from the governmental directory in Saskatchewan [34].
In this study, the road density is defined as the linear length of highways divided by the
division area, with a unit of km/km2. The road network dataset, including both highways
and grid roads (e.g., local streets), was retrieved from the Statistics Canada portal [35]. For
simplicity, only highways were considered for PIDS detection purposes.

2.2.2. MODIS Products (Satellite Imagery)

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an Earth’s surface
observing instrument onboard the Terra satellite. The MOD11C3-V6 product, generated
from MODIS images, includes LST data with a spatial resolution of 0.05◦, equal to the size
of the Climate Modeling Grid (CMG). Details of the adopted remote sensing products are
shown in Table 2. The MOD11C3 product was retrieved from the NASA Goddard Earth
Science Data and Information Services Center called Giovanni [36]. Giovanni classifies
the product by disciplines (e.g., aerosols, atmospheric chemistry, cryosphere, hydrology,
water, and energy cycle), measurements (e.g., aerosol index, air temperature, CH4, cloud
fraction, surface temperature, vegetation), instruments (e.g., MODIS Terra, MODIS Aqua),
and others (spatial and temporal resolution, and wavelength). The LST of waste disposal
sites is generally higher than their surrounding area due to the biodegradation of the
organic fraction of the waste, particularly during summer [37]. As such, time-averaged
products were collected during the summer of 2022, as is shown in Table 2. Similarly,
the MOD13C2-V6 product was retrieved from MODIS images. MOD13C2 includes an
enhanced vegetation index (EVI) with a similar spatial resolution of 0.05◦. In this study,
EVI was used as an alternative to the Normalized Difference Vegetation Index, as EVI
minimizes errors rooted in atmospheric conditions and canopy background noise [38].

Table 2. Details of satellite imagery and products used in current study.

Satellite Terra Aura Suomi NPP

Sensor MODIS OMI VIIRS

Spatial resolution 0.05◦ 0.1◦ 15 arc second, about 500 m

Product name MOD11C3_006 (LST)
MOD13C2_006 (EVI) OMHCHOd_003 NASA Black Marble NTL

Outcomes LST (daily), EVI (monthly) HCHO (daily) 2016

Data time period 1 June–31 August 2022 1 June–31 August 2022 2016

It is hypothesized that the incorporation of both LST and EVI can be useful in identify-
ing PIDS. For example, higher LST (i.e., biodegradation of organics) and lower vegetation
indices (i.e., disturbed land cover with poor vegetation growth) are frequently reported in
the vicinity of disposal sites [3,39–42].
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2.2.3. OMI Products (Satellite Imagery)

The Ozone Monitoring Instrument (OMI) onboard the Aura satellite maps pollutants
including O3, NO2, SO2, and other aerosols [43]. A daily concentration of formaldehyde
(HCHO), a carcinogen in outdoor air, can be obtained by OMI/Aura [44]. Major populated
spots are difficult to define precisely in suburb regions in Saskatchewan. Identifying the
signs of anthropogenic activity is an indirect way to pinpoint areas with a high probability of
illegal dumping activities [45–47]. Therefore, formaldehyde, a human source pollution [48],
is adopted in the current study as an indirect factor on the occurrence of PIDS. Data were
collected for three summer months in 2022, as shown in Table 2.

2.2.4. NASA Black Marble Nighttime (Satellite Imagery)

Due to the presence of smaller unidentified populated areas in remote and suburb
communities in Saskatchewan, NASA Black Marble nighttime light satellite imagery is
adopted to estimate areas with high anthropogenic activities. The satellite imagery origi-
nated from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the National
Polar-Orbiting Platform (NPP) [49]. NASA’s Black Marble product is primarily designed
to provide cloud free imagery nighttime light (NTL) imagery, including but not limited
to stray light, terrain, vegetation, and lunar effects [50]. The last available NASA Black
Marble NTL imagery in 2016 was adopted in the present work. It is assumed that the
spatial distribution of the man-fabricated infrastructures at the study area, derived from
the 2016 NTL imagery, remained mostly unchanged from 2016 to 2022. This assumption
is reasonable in the study area, given the current local economic activities. For example,
the total number of waste facilities in Division 11, including landfills and transfer stations,
remained almost constant between 2017 and 2020. Final NTL imagery is classified into
binary classes (bright and dark) using equal intervals, and a bright class is made up of an
aggregation of neighboring bright pixels.

A bright area was then created using the raster to polygon conversion tool in Ar-
cGIS [51] to encompass the bright pixels and to delineate populated areas (i.e., polygons).
The centroids of the polygons were then used to pinpoint the major populated points using
polygon to point conversion tool in ArcGIS [52]. A similar approach was successfully
applied in the province of Saskatchewan to identify the populated centers at a regional
level [25]. Illegal dumping activities are originated from anthropogenic activities, and
identification of populated points using NTL helps to better capture the presence of human
settlements outside the predefined urban areas. A total of 21 major populated points were
identified using NTL in the study area, and are shown as the red circles in Figure 1. The ma-
jority of the NTL populated points are located along the major road network. More major
populated points are observed near the vicinity of the city of Saskatoon at the northwestern
quadrant of the Division 11.

2.2.5. Integration of Normalized Variables

Fuzzification sets the values of variables between 0 and 1 based on the probability of
membership, and allows the aggregation of the variables [53]. In solid waste management
studies, fuzzification is commonly partnered with multicriteria decision making analysis
where different parameters were evaluated simultaneously [13,22,54], particularly in the
landfill siting studies [55–57] and PIDS mapping [2,24]. Depending on the variables, two
types of fuzzification were considered in this study: linear and inverse linear. Proximity
to the road network increases the probability of illegal dumping activities, and an inverse
linear relationship is assigned (i.e., the shorter the distance, the higher chance of PIDS
occurrence). On the other hand, proximity to landfills discourages illegal dumping activities
and a linear relationship is assumed (i.e., the shorter the distance, the lower probability of
PIDS occurrence). Types of different fuzzification, their implications, and references are
tabulated in Table 3.
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Table 3. Types of different fuzzification methods applied to each of the five variables.

Variable Fuzzification Type Justifications References

Landfills Linear
Higher probability of PIDS when the

Euclidean distance to the nearest landfill
is higher

[20,58]

LST Linear
Higher probability of PIDS when the land

surface temperature is elevated due to
biodegradation of organic waste fraction

[3,40,41,59]

HCHO Linear
Higher probability of PIDS near locations

with higher level of anthropogenic
activities (HCHO concentration)

[8,21,60]

Highway Inverse linear
Higher probability of PIDS when the

distance to an intensified road network
(highway) is shorter

[1,8,19]

EVI Inverse linear
Higher probability of PIDS when the
vegetation growth is poorer and EVI

is lower
[4,42,61]

2.3. Map Extraction and Implications
2.3.1. Map of Potential Illegal Dump Sites (PIDS)

Once all layers were fuzzified, the simple additive weighting (SAW) method was used
to overlay all layers. Since the total number of layers is equal to five, the final overlaid
fuzzified layer values ranged from 0 to 5. The SAW method is frequently used to integrate
fuzzified variables and to produce the overall ranking [62,63]. Similar to Glanville and
Chang [19] and Jakiel et al. [1], the final map was then classified into five distinct classes
using the quantile method from “very low” to “very high”. In addition, the “Majority”,
“Boundary Clean”, and “Smooth” filters and editing tools were applied to reduce the
number of island pixels and smooth the edges of all classes [64–66]. Since the focus of this
study is to examine the highest PIDS, only the “very high” class is considered further. The
final results are converted to polygons using the “Feature to Polygon” conversion tool in
ArcGIS [67].

2.3.2. Classification of PIDS Using GIS Network Analysis

Once the PIDS were mapped, the sites were prioritized using GIS Network Analysis.
The road network dataset discussed in Section 2.2.1 was used to build the GIS network
dataset. Average driving speeds of 80 km/h and 60 km/h were assigned to highways and
urban roads, respectively [68]. Attributes such as road condition, gradation, and traffic
and turn restrictions are not provided in the network dataset and are not considered in the
current study. The maximum allowable traveling time from the major populated points to
PIDS, was set at 77.4 min [3,24]. ArcMap 10.5 network analysis extension was used. Both
“Closest Facility” and “Service Area” analyses were adopted to calculate the travel time
and area coverage (AC), respectively. The “Closest Facility” solver computes the traveling
distance between an incident (i.e., major populated point), and a nearby facility (i.e., active
landfills) [69]. The “Service Area” solver finds the service area in the neighborhood of a
given point (i.e., the centroid of PIDS) [70]. AC area, derived from “Service Area” solver, is
used as an indirect way to show how the neighboring area can contribute to a given PIDS
within a specified travel time. Thus, the denser the nearby road network and the greater
the AC, the higher the likelihood of illegal dumping activities.

2.3.3. Zonal Statistics and the Relative Contribution of the Selected Variables

Zonal average statistics have been used to evaluate different geospatial aspects of a
solid waste management system, including disposal sites ranking [62] and suitability siting
of future landfills [13]. Zonal statistics describe the relative importance of the variables in
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each class. In this study, zonal statistics are used to examine the respective contribution of
the five variables in the final mapping of the PIDS.

3. Results and Discussion
3.1. Mapping of PIDS

PIDS are identified using the proposed analytical method, and the final PIDS map is
shown in Figure 3a. Four PIDSs are scattered within Division 11. Cumulatively, the total
area of PIDS accounts for about 6495 km2, or about 37.3% of Division 11 (Table 4). Almost
all of the PIDS are surrounded by a number of highways (Figure 3a), and accessibility
appears important at the study area. Overall road densities in PIDS ranged from 0.098 to
0.251 km/km2, with an average road density of 0.115 km/km2 (Table 4). The accessibility
of the PIDS is slightly higher than the road density in the entire study area of 0.10 (Table 1).
PIDS 1 is located at the north of Saskatoon, the most populated city of the province. PIDS 1
is the smallest with an area of 234.8 km2, or about 1.3% of the study area (Table 4). Given
the smaller area and the close proximity of a major city (Saskatoon), a patrol car can be
easily employed to inspect the PIDS regularly. On the other hand, PIDS 2 is the largest
one with an estimated area over 3575 km2 (about 20.5% of the study area). In this case, a
drone or an unmanned aerial vehicle is recommended to inspect the area on a monthly
basis. The characteristics and contributing factors of each identified PIDSs are separately
discussed below.

Table 4. Attributes of the identified PIDS in Division 11.

Area
ID

PIDS
Area
(km2)

Total Highway
Length

(km)

Percent of Total
Study Area

(%)

Linear Road
Density

(km/km2)

Number of
Populated Points

within AC

AC
(km2)

Average Travelling
Time (min)

1 234.8 59 1.3 0.251 9 2142.3 26.1
2 3575.0 350.2 20.5 0.098 3 2482.6 No landfills

3 269.7 36.3 1.5 0.135 0 1671.1 No major populated
point

4 2415.5 299.7 13.9 0.124 6 3360.0 35.3
Total 6495.1 745.2 37.3 0.115 18 9656.1 -

PIDS 1, located near the northwestern corner of Division 11 (Figure 3a), is the closest to
the City of Saskatoon. PIDS 1 has the highest road density in the study area (0.25 km/km2,
Table 4). As such, the area coverage of the major populated points is also the largest (AC = 9,
Table 4). The majority of these major populated points are distributed along a southern–
northern highway (Figures 3a and 4a), probably due to urban sprawl. Sizo et al. [71] showed
that the lack of detailed zoning plan for urban development near Saskatoon has stressed the
conservation efforts of wetlands. Likewise, Habibi and Asadi [72] indicated that the urban
sprawl might be due to absence of long-term land use management, extensive use of strip
development of small industrial and residential communities, and leap-frog development
along the roads and major highways. However, the presence of two active landfills in AC 1
(Figure 3b) along with a shorter average travel time from the major populated points to
adjacent landfills (26.1 min, Table 4) might mitigate potential illegal dumping activities.

PIDS 2, with a size of over one fifth of the study area (3575.0 km2), is located along
the eastern edge of the study area, as shown in Figure 3a. A larger AC 2 of 2482.6 km2 and
the absence of an active landfill (Figure 3b) might encourage illegal dumping activities.
Unlike other divisions in Saskatchewan, significantly more transfer stations are used in this
division. Ghosh and Ng [73] examined the waste management system in Saskatchewan
and reported that Division 11 had the smallest landfill to transfer station ratio of 0.4 in 2017.
However, the road density of PIDS 2 (0.098 km/km2, Table 4) is also the lowest. Therefore,
accessibility of the major populated points is only moderate. It appears that the distribution
of major populated points in Division 11 is not properly reflected in the design of the road
network. Richter et al. [74] also reported that the distribution of waste management facilities
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and populated points are not well-aligned with the divisional boundaries in Saskatchewan
and recommended a new tessellation-based regional waste management system.
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PIDS 3, with an area size of 270.0 km2, or 1.5% of the study area, is located in the
southern central part of the study area (Figure 3a). AC 3 has the smallest area coverage in
the study (1671.1 km2, Table 4), and there are no major populated points. The presence of
an active landfill in the west (Figure 3b) might mitigate illegal dumping activities.
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PIDS 4, with an area of 2415.5 km2, or 13.9% of the study area, is located at the south-
western corner (Figure 3a). PIDS 4 has the largest AC (AC 4 = 3360.0 km2, Table 4), probably
due to the unique spatial distribution of major populated points and an interconnected
road network. Half of the major populated points, three out of six, were located in close
proximity with each other near the southeast corner. An active landfill in AC3 is located
nearby (Figures 3b and 4b), and supports the three major populated points at the southeast
of AC 4. The three major populated points are located near the intersection of Highways
11 and 44 and the town of Davidson (Figure 4b). As shown in Figure 4b, considerably
longer travel time is required for the residents at Kenaston and Loreburn to access the
nearby landfill (Figure 4b), with an average travel time of 69.8 min. The village of Kenaston
implemented a year-round biweekly schedule for garbage pickup for its residents [75]
which helps to reduce illegal dumping activities. The populated point at the south of Lore-
burn is a pipeline station facility that belongs to Enbridge Piplines Inc., which is committed
to sustainable waste management practices [76]. The residents of the Town of Outlook
are served by its own municipal landfill located southeast of the town, with an average
travel time of only 6.43 min (Figures 3b and 4c). The average travel time from all populated
points in AC 4 to their nearest landfill is about 35.3 min (Table 4).
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Table 4 shows the attributes of the identified PIDS in Division 11. PIDS 1 has the most
intensified road network (highest road density = 0.251 km/km2) and the highest coverage
of 9 populated points. On the other hand, PIDS 2 has the largest PIDS area of 3575.0 km2

and the longest cumulative highway of 350.2 km. However, PIDS 4 has the largest AC
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of 3360.0 km2 and the longest average travel time from neighboring populated points to
adjacent landfills of 35.3 min. The results suggest that all these factors have observable
effects on the occurrence of PIDS in the study area. The magnitude of these effects are
however not identical.

3.2. Variables’ Zonal Statistics in PIDS

Zonal statistics of each variable are shown in Figure 5. A higher average membership
grade (closer to unity) shows a greater contribution of a variable in identification of PIDS
in Division 11, while a lower average grade shows less contribution. Standard deviation
(STD) is helpful in evaluating the spatial sensitivity of a given variable, and a higher STD
shows a higher sensitivity to spatial changes. An effective variable in PIDS identification
should have both high membership grade and high STD.
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Figure 5. Zonal statistics of five variables and their contributions to PIDS occurrence.

The Euclidean distance between active landfills and major populated points (Landfills)
and vegetation greenness of the landcover (EVI) have moderate impacts on PIDS occurrence,
with average membership grades of 0.31 and 0.41, respectively. The distance to landfills
in Division 11 appears to be less important than other factors. It is believed the operation
hours of landfills and the geospatial location of transfer stations may have impacted the
PIDS occurrence in Division 11; however, they are not explicitly considered in the current
study. Predominating uniform land cover of grassland and shrub land in northern prairies
might undermine the importance of EVI in PIDS identification.

Higher average membership grades (>0.5) are observed for LST and highways. The
factors are also spatially sensitive, with STDs of 0.15 and 0.11 for LST and highways,
respectively. The results suggest that both parameters are good indicators in mapping PIDS
in Division 11. It has been widely reported that LST can be used as a proxy to identify
landfills and illegal disposal sites [3,78,79]. In addition, the majority of illegal dumping
activities were reported either in the vicinity of the road network or in places with greater
accessibility [1,80,81]. Both factors are recommended for studies on the identification
of PIDS.

The membership grade for HCHO is the highest, 0.95. However, the STD is quite low
(STD = 0.07). The concentration of formaldehyde in the atmosphere is directly related to
the level of anthropogenic activity in a given location, and therefore related to the PIDS
occurrence. In other words, the higher the degree of anthropogenic activity in a region,
the higher probability of PIDS. Given the lower STD (<0.1), the parameter may not be an
effective factor on the identification of PID. The lower STD can be originated from the
dispersion of the HCHO in the atmosphere, resulting in a homogeneous distribution of
atmospheric HCHO concentrations.
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3.3. Limitations

This study proposes an original analytical framework to map potential illegal dump
sites in Saskatchewan, Canada. High-resolution satellite imagery and/or site visits are
required to pinpoint and to verify the exact locations of PIDS in a given region. As such, a
long-term field study is recommended to verify the development of actual illegal dump
sites. The proposed method is intended to serve as an efficient screening tool for regulators
and policy makers, especially suitable in Canada [82,83]. Please note that the proposed
method is unable to pinpoint the exact locations of these illegal dump sites.

For simplicity, only the highway network is considered in the current study, and
unpaved surfaces are ignored in the GIS Network Analysis. The use of a more com-
prehensive road network may improve the accuracy of model. We also assumed equal
weight for each variable on the PIDS occurrence. A sensitivity analysis on the variables is
also recommended.

4. Conclusions

Identifying PIDS is a worldwide challenge for both developing and developed coun-
tries due to the higher waste tipping fees and increasingly stringent environmental guide-
lines and regulations. Detection, monitoring, and remediation of illegal disposal sites are
time consuming and often require substantial financial resources. In the current study, a
systematic framework is proposed to identify PIDS using a combination of satellite im-
agery and GIS Network Analysis. A 17,400 km2 study area in Saskatchewan, Canada, is
considered. Given the availability of free satellite imagery across the globe, the proposed
analytical framework is applicable in other areas.

A total of five variables (Landfills, LST, HCHO, Highways, and EVI) were used to
identify and prioritize PIDS. In this study, identified PIDS account for about 37.3% of the
study area. Road network intensity and accessibility appear important to the occurrence of
PIDS. Overall road densities in identified PIDS ranged from 0.098 to 0.251 km/km2, with
an average road density of 0.115 km/km2.

Results suggested that different factors influenced the occurrence of PIDS in different
ways. PIDS 1 has the most intensified road and the most populated points. PIDS 2 has
the largest PIDS area of 3575.0 km2 and the longest cumulative highway. PIDS 4 has the
largest AC and the longest average travel time. All considered factors have observable
effects on the occurrence of PIDS within the study area. Among the five variables, LST
and highways are recommended for identification of PIDS. Both factors showed higher
membership grades over 0.5 and higher spatial sensitivity (STD > 0.1) within the study area.
The membership grade for HCHO is the highest; however, the parameter is less spatially
sensitive, limiting its potential as a PIDS indicator. Results from the case study suggest
that the combination of multiple remote sensing indices and network analysis on PIDS
prioritization is more advantageous from a practical standpoint. The analytical framework
presented here can be easily adopted in other solid waste management systems.
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