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Abstract: This study aims to assess urban heat islands and land cover types in relation to vulnerable
populations. The city of Richmond, Virginia was selected as the study area using the Census Block
Group as the geographic unit of analysis. Regression analysis was carried out to examine the
impacts of land cover types on ambient temperatures, while correlation analysis was used to assess
the relationship between ambient temperature and vulnerable populations. Lastly, multivariate
clustering analysis was performed to identify areas vulnerable to urban heat in the city. Findings
suggest that: (1) impervious surfaces lead to higher ambient temperatures, while tree coverage has a
cooling effect on urban heat; (2) vulnerable populations, except for older adults, tend to live in areas
with higher ambient temperatures; and (3) vulnerable populations are spatially clustered in specific
locations in the city. This study concludes with recommendations of mitigation measures to reduce
the adverse effect of urban heat islands by applying high-albedo materials to urban surfaces and
expanding tree coverage and green space.
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1. Introduction

The concept of the urban heat island (UHI), that urban areas are warmer than its
surrounding rural areas, and its effects were first observed and discussed by Luke Howard
in the 19th century [1] (pp. 6–9). Since then, research on the UHI phenomenon has expanded
to include temperature variations within a city [2–7]. A few human and natural factors
contribute to the temperature variations forming urban heat islands. For instance, the
UHI-inducing factors include reduced natural landscapes due to urbanization [4,8], heat-
absorbing urban materials [9,10], dimensions and spacing of urban structures [11], heat
generated from human activities [12], geographic location, and topography. With regards
to the built environment, prior studies found that impervious surfaces greatly intensify
ambient temperature [13], while tree canopy coverage can reduce it significantly [14,15].

The urban heat island effect is commonly associated with negative impacts concerning
energy consumption, air quality, water quality, and human health [16]. Warmer ambient
temperatures increase demand for air conditioning during hot summer months, which
leads to increased demand for electricity [17]. When electricity is produced by fossil fuel
power plants, air quality is affected because of increased air pollutants and greenhouse gas
emissions [16]. Water quality is affected as well, because of the discharge of heated runoff
caused by high temperatures of pavement and building surfaces [18], which negatively
affects the health of aquatic ecosystems [16]. The UHI effect on human health arises due to
the increased risk of developing heat-related illnesses or even death resulting from high
temperatures [19]. The U.S. Environmental Protection Agency (EPA) lists the following
population groups as having a greater risk for heat-related health impacts: older adults
(65+ years); outdoor workers; people with existing medical conditions; children, infants,
and pregnant women; athletes; people who live alone; people who are homeless; and
people with limited personal resources to deal with extreme heat [20].
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Many scholars have found that the risk of developing heat-related illnesses or deaths
are greater among vulnerable populations, including those in poverty and people of
color, who have fewer resources to mitigate heat and limited capacities to adapt to high
temperatures [21–25]. In cooler urban areas with trees and green space, the literature
indicates that places with a lower proportion of tree cover tends to be associated with a
higher proportion of minority population, low-income residents, and renters [26–28]. It
is important to note that UHI mitigation measures should specifically target those areas
with higher temperatures and a higher proportion of vulnerable populations who are more
susceptible to heat exposure [29].

There are generally two approaches to assess UHI, using: (1) satellite remote sensing
data to derive surface temperatures [30–33], and (2) ground-based measurements of in situ
temperatures [34–36]. However, each approach has its strengths and weaknesses. While
satellite remote sensing data are more readily available and provide comprehensive spatial
coverage, they generally suffer from relatively lower resolution compared to ground-based
measurements [32,37]. On the other hand, ground-based measurements can deliver finer
temperature measurements, but additional efforts are required to estimate temperatures
for unmeasured locations in a given study area. To take advantage of the strengths of both
approaches, this study utilized a city-wide dataset derived by integrating ground-based in
situ temperature measurements and Sentinel-2 land use/land cover (LULC) data [37]. This
dataset is further discussed in Section 2.1.

1.1. Study Aim and Scope

Following the trends in the UHI literature, this study assesses urban heat islands and
land cover types in relation to vulnerable populations in the city of Richmond, Virginia.
This study aims to:

1. Investigate the impacts of land cover types on ambient temperatures;
2. Examine the relationship between ambient temperatures and vulnerable populations;
3. Identify specific locations with high ambient temperatures and high percentages of

vulnerable populations;
4. Recommend mitigation measures to reduce the adverse effect of urban heat islands.

While there is an extensive body of literature on the UHI and its relationship with
land cover and vulnerable populations, UHI-related research about the city is rather sparse.
In addition, the study utilizes a 10-m resolution ambient temperature dataset [37] and
a one-meter resolution land cover dataset [38]. These high-resolution datasets deliver
more precise results of the impacts of land cover types on ambient temperatures. More
importantly, this study presents a novel approach using multivariate clustering analysis [39]
to identify specific vulnerable areas where mitigation measures should be prioritized
for implementation.

1.2. Study Area and Geographic Unit of Analysis

The city of Richmond, Virginia is selected as the study area (Figure 1). Situated in
the mid-Atlantic region, Richmond is the state capital of Virginia, about 170 km south of
Washington, D.C. Richmond has a population of 226,610 in 2020 [40] and an area of about
162 square kilometers. The city’s summer months are generally warm and humid, and the
hottest month is July, with an average high temperature of 88 ◦F or 31.11 ◦C [41]. Like other
urbanized areas, Richmond also experiences the UHI effect [42].
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Figure 1. Study area and its location—the city of Richmond, Virginia.

When it comes to the geographic unit of analysis, more details can be preserved if
smaller geographic units are used. The smallest Census geographic feature is the Census
Block, followed by Block Group and then Tract, but not all data are available at the Block
level. For this reason, it was decided to use Census Block Group as the geographic unit of
analysis in this study. Richmond has 161 Block Groups and data collected from different
sources were aggregated to and analyzed at the Block Group level.

2. Materials and Methods

A comprehensive city-wide ambient temperature dataset is needed to assess urban
heat islands and their associations with land cover types and vulnerable populations.
Because the ambient temperature dataset was mainly derived from ground temperature
measurements collected in 2017, care was taken to obtain other datasets published around
the same time as the ambient temperature dataset. They include the Virginia land cover
dataset released in 2016 by the Virginia Geographic Information Network (VGIN) and
the 2017 American Community Survey (ACS) 5-year estimates concerning vulnerable
populations. All three datasets are further described in the following sections.

2.1. Ambient Temperature

The ambient temperature dataset of Richmond was provided by Dr. Jeremy Hoffman
of the Science Museum of Virginia. Dr. Hoffman and Dr. Eugene Maurakis, scientists with
the Science Museum of Virginia, and Dr. Vivek Shandas, a professor of urban studies and
planning at Portland State University, collaborated with Richmond community members,
universities, and nonprofits to collect temperature data across the entire city at 6:00 a.m.,
3:00 p.m., and 7:00 p.m. on 13 July 2017 [42]. Temperature measurements were collected at
a one-second interval via vehicular traverses across the city using vehicle-mounted temper-
ature sensors and GPS devices. All temperature and location data were further integrated
with the Sentinel-2 satellite data to predict the city-wide ambient temperatures. According
to Shandas et al., the integration of ground-based in situ temperature measurements and
the Sentinel-2 land use/land cover (LULC) data was done by building a predictive model
based on the relationship between observed in situ temperature values and their associ-
ated LULC attributes [37]. Areas where in situ temperatures were not measured could
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be predicted based on their LULC attributes. This model produced a city-wide ambient
temperature dataset, which was provided by Dr. Jeremy Hoffman to support this study.

The resulting ambient temperature dataset contains three 10-m resolution raster layers
of 6:00 a.m., 3:00 p.m., and 7:00 p.m. This study used the 3:00 p.m. version (Figure 2a)
because it contains the highest temperatures, which depicted the urban heat islands more
prominently. Given that the ambient temperature dataset is in raster format, Block Group
level temperatures need to be aggregated from the temperature values stored in the raster
grid cells. ArcGIS Pro’s “Zonal Statistics as Table” tool can summarize the values of a raster
within the zones of another dataset and reports the results as a table [43]. Specifically, the
following ArcGIS Pro parameters were used to compute the mean ambient temperatures at
the Block Group level:

• Input zone data: Richmond Block Group layer;
• Zone field: Block Group ID (i.e., ID numbers of Block Groups);
• Input raster: city-wide ambient temperature raster layer (3:00 p.m.);
• Statistics type: mean.
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Figure 2. (a) Ambient temperatures of Richmond, Virginia. (Data source: ground temperature
measurements were collected through vehicular traverses at 3:00 p.m. on 13 July 2017 and integrated
with the Sentinel-2 satellite data to predict the city-wide ambient temperatures [37]); (b) mean ambient
temperature at the Block Group level.

Using ArcGIS Pro’s “Zonal Statistics as Table” tool, ambient temperatures associated
with the raster grid cells inside a given Block Group were aggregated to compute the mean
ambient temperature of that Block Group (Figure 2b). The Block Group mean ambient
temperature, denoted as Ambient_temp in this study, serves as the proxy variable of UHI, as
well as the dependent variable in the upcoming regression analysis (Section 3.1), which
examines the impacts of land cover types on ambient temperatures.

2.2. Land Cover Types

The Virginia Geographic Information Network (VGIN) and its partners coordinated
on the development of a statewide land cover dataset [38] that leverages the Virginia
Base Mapping Program (VBMP) digital orthophotography to create a statewide one-meter
resolution digital land cover classification. This dataset contains a total of 219 map tiles
and became available to the public in 2016 [44]. Specifically, Richmond is partially covered
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by map tiles S13_76, S13_77, and S13_87. The aforementioned map tiles were downloaded
and clipped with the Richmond city boundaries using ArcGIS Pro’s “Clip” tool [45]. This
was done using the following “Clip” tool parameters:

• Input features: map tiles S13_76, S13_77, and S13_87 (they were clipped one at a time);
• Clip features: Richmond city boundaries.

By specifying the clipped map tiles as input datasets in ArcGIS Pro’s “Append”
tool [46], the clipped map tiles were appended together to produce a seamless land cover
dataset of Richmond with the following land cover types: water feature, impervious surface,
barren land, tree cover, and turf grass (Figure 3).
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Figure 3. Land cover types of Richmond, Virginia. (Data source: land cover data were downloaded us-
ing the Land Cover Dataset Download application developed by the Virginia Geographic Information
Network (VGIN) [44]).

Similar to the ambient temperature, land cover data at the Block Group level need
to be compiled from the land cover layer. ArcGIS Pro’s “Tabulate Intersection” tool can
compute the intersection between two feature classes and cross-tabulate the area, length, or
count of the intersecting features [47]. Specifically, the following ArcGIS Pro parameters
were used to derive the area measurement of each land cover type at the Block Group level:

• Input zone features: Richmond Block Group layer;
• Zone field: Block Group ID (i.e., ID numbers of Block Groups);
• Input class features: land cover dataset;
• Class field: land cover ID (i.e., ID numbers of land cover types).
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Using ArcGIS Pro’s “Tabulate Intersection” tool, the land cover layer was intersected
with the Richmond Block Groups to derive the areas of land cover types within the Block
Groups. Based on the land cover area measurements, the percentages of land cover types
within a given Block Group were computed and described below.

• Water_pct: percentage of Block Group area covered by water features;
• Impervious_pct: percentage of Block Group area covered by impervious surfaces;
• Barren_pct: percentage of Block Group area covered by barren land;
• Tree_pct: percentage of Block Group area covered by trees;
• TurfGrass_pct: percentage of Block Group area covered by turf grass.

These percentages of land cover types serve as the independent variables in the upcoming
regression analysis (Section 3.1) of the impacts of land cover types on ambient temperatures.

2.3. Vulnerable Populations

Datasets concerning vulnerable populations were obtained from the 2017 Ameri-
can Community Survey (ACS) 5-year estimates at the Block Group level. In specific,
five vulnerable populations are investigated in this study. They are described below along
with their associated ACS data tables.

• older_adults_pct: percentage of older adults 65 years and over (Data source: ACS
table B01001);

• non-white_pct: percentage of non-white (i.e., minority) population (Data source: ACS
table B02001);

• below_poverty_pct: Percentage of population with income below poverty level (Data
source: ACS table B17021);

• disability_pct: Percentage of population 20–64 years with a disability (Data source: ACS
table B23024);

• no_insurance_pct: Percentage of population with no health insurance coverage (Data
source: ACS table B27010).

The above ACS tables were downloaded from the US Census Bureau website, joined
to the Richmond Block Group layer, and visualized in ArcGIS Pro. The spatial distributions
of vulnerable populations are presented in Figure 4. Mean ambient temperature at the
Block Group level (Figure 4a) is shown again to provide a visual reference in comparison
with the spatial patterns of vulnerable populations.
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2.4. Methodology

A regression model was constructed to examine the impacts of land cover types on
ambient temperatures. It sheds light on the direction and the strength of the influence of
each land cover type on ambient temperatures. This provides insights on mitigating UHI
effects by changing land cover types or modifying their thermal properties. The regression
analysis was done using SPSS, where the ambient temperature is the dependent variable
and the land cover types are the independent variables. This regression model is presented
in Equation 1 and further discussed under Section 3.1.

As to the relationship between ambient temperature and vulnerable populations,
correlation analysis can help examine how vulnerable populations are exposed to urban
heat. The correlation analysis was also done using SPSS. Results of the correlation analysis
are presented and discussed in Section 3.2.

In addition to the regression and correlation analyses carried out in SPSS, ArcGIS Pro’s
“Multivariate Clustering” tool [39] can deliver an optimized solution where all the Block
Groups within each cluster are as similar as possible, and all the clusters themselves are as
different as possible [48]. In short, multivariate clustering can identify specific areas with
higher ambient temperatures and higher percentages of vulnerable populations, where
mitigation measures should be targeted. In this study, the following ArcGIS Pro parameters
were used to carry out the multivariate clustering analysis:

• Input features: Richmond Block Group layer;
• Analysis fields: ambient temperature (Ambient_temp), percentage of non-white pop-

ulation (non_whte_pct), and percentage of population with income below poverty
level (below_poverty_pct);

• Clustering method: K medoids (note: this option is more robust to noise and outliers in
the input features);

• Initialization method: optimized seed locations (note: this option randomly selects the
first seed and makes sure that the subsequent seeds selected represent features that
are far away from each other in data space).

Findings of the regression, correlation, and multivariate clustering analyses are pre-
sented in the next section.



Earth 2022, 3 740

3. Results
3.1. Regression Analysis of Ambient Temperature and Land Cover Types

Based on the research hypothesis that ambient temperatures can be affected by land
cover types, a regression model was constructed to examine the impacts of land cover types
on ambient temperatures at the Block Group level. The regression model is expressed as:

Ambient_temp (predicted) = b0 + b1 × Water_pct + b2 × Impervious_pct + b3 ×
Barren_pct + b4 × Tree_pct + b5 × TurfGrass_pct

(1)

The dependent variable (Ambient_temp) is derived from the ambient temperature
dataset described in Section 2.1. The independent variables (Water_pct, Impervious_pct,
Barren_pct, Tree_pct, TurfGrass_pct) are based on the computed percentages of land cover
types described in Section 2.2. Given the regression coefficients derived from the regression
analysis (Table 1), the regression model can be written as:

Ambient_temp (predicted) = 33.687 − 0.002 × Water_pct + 0.023 × Impervious_pct +
0.092 × Barren_pct − 0.012 × Tree_pct + 0.023 × TurfGrass_pct

(2)

As shown in Table 1, the regression analysis generated many statistics that uncover
the relationship between dependent and independent variables, as well as the explanatory
power and influence of independent variables on the dependent variable. Starting with the
F value, a statistic used to assess the statistical significance of the regression model, this
regression model is statistically significant (F = 69.783, p < 0.001). It also exhibits a strong
relationship between ambient temperature and land cover types (multiple R = 0.832). When
it comes to the explanatory power of the independent variables, both R2 and adjusted R2

can be used to assess the percentage of variance in the dependent variable explained by
the independent variables. Adjusted R2 is chosen because it takes into account the number
of independent variables and observations, which help to increase the reliability of the
regression model. Given an adjusted R2 of 0.682, land cover types explained over 68 percent
of the variance in ambient temperature.

Table 1. Regression analysis of ambient temperature and land cover types (N = 161).

Collinearity Statistics

Independent Variables Coefficient Std. Error Beta t Sig. Tolerance VIF

Constant 33.687 0.278 121.176 <0.001
Water_pct −0.002 0.006 −0.016 −0.278 0.782 0.630 1.587
Impervious_pct 0.023 0.003 0.786 8.094 <0.001 0.211 4.747
Barren_pct 0.092 0.024 0.180 3.783 <0.001 0.881 1.135
Tree_pct −0.012 0.005 −0.201 −2.633 0.009 0.339 2.951
TurfGrass_pct 0.023 0.003 0.415 6.561 <0.001 0.495 2.020

Dependent Variable: Ambient_temp: Ambient temperature of Richmond, Virginia at 3 p.m. on 13 July 2017.
Independent Variables: Water_pct: Percentage of Block Group area covered by water feature.

Impervious_pct: Percentage of Block Group area covered by impervious surface.
Barren_pct: Percentage of Block Group area covered by barren land.
Tree_pct: Percentage of Block Group area covered by tree.
TurfGrass_pct: Percentage of Block Group area covered by turf grass.

Multiple R = 0.832; R2 = 0.692; Adjusted R2 = 0.682; F = 69.783 (p < 0.001)

Collinearity among independent variables was also diagnosed within the regression
analysis. If an independent variable is highly correlated with other independent variables,
it should be excluded from the regression model to minimize redundancy. Specifically,
two collinearity statistics are produced by the regression analysis: tolerance and variance
inflation factor (VIF). Tolerance is computed by one minus the R2 of the regression model
when a given independent variable is regressed by the rest of the independent variables. In
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other words, larger tolerance values are associated with smaller R2 values, which translate
to less collinearity. VIF is the reciprocal of the tolerance; therefore, smaller VIF values are
associated with larger tolerance values or less collinearity. Given that the tolerance values
are relatively high (greater than 0.1), or the VIF values are relatively low (less than 10), the
regression model does not have a concerning collinearity issue.

The standardized regression coefficients—the beta values—are derived from a re-
gression analysis based on standardized variable values. They can be used to assess and
compare the influence of independent variables on the dependent variable on a standard
deviation basis. Independent variables with positive beta values have positive impacts on
the dependent variable, while negative beta values indicate negative impacts. Absolute
beta values can be used to assess the strength of the impacts of independent variables.
Regarding the impacts of land cover types on ambient temperatures, the beta values in-
dicate that impervious surface has the strongest impact (beta = 0.786), followed by turf
grass (beta = 0.415), tree cover (beta = −0.201), barren land (beta = 0.180), and water feature
(beta = −0.016). It is worth noting that impervious surface, turf grass, and barren land
have positive beta values in the regression model, indicating that they all contribute to the
increase in ambient temperatures. Respectively, tree cover and water feature have negative
beta values and they have cooling effects on ambient temperatures. Lastly, the t value is a
statistic used to evaluate the statistical significance of the impact of a given independent
variable on the dependent variable. Among the independent variables, the only one that is
not statistically significant is water feature (t = −0.278, p = 0.782), most likely due to the
lack of it and its uneven distribution in the city.

3.2. Correlation Analysis of Ambient Temperature and Vulnerable Populations

A correlation analysis was performed to investigate the relationships between ambient
temperature and vulnerable populations, and the resulting correlation coefficients are
presented in Table 2. The only vulnerable population that has a negative relationship with
ambient temperature is older adults (r = −0.3131), indicating that they are less susceptible
to urban heat. In contrast, the other vulnerable populations are positively related to
ambient temperature, suggesting that they have a greater health risk associated with urban
heat. In specific, Block Groups with higher ambient temperatures tend to have higher
percentages of non-white population (r = 0.2207), population with income below poverty
level (r = 0.2477), population 20–64 years with a disability (r = 0.0649), and population with
no health insurance coverage (r = 0.1067).

Table 2. Correlation analysis of ambient temperature and vulnerable populations (N = 161).

Variable Ambient_temp older_adults_pct non_white_pct below_poverty_pct disability_pct no_insurance_pct

Ambient_temp 1
older_adults_pct −0.3131 ** 1
non_white_pct 0.2207 ** −0.1194 1
below_poverty_pct 0.2477 ** −0.3098 ** 0.5268 ** 1
disability_pct 0.0649 −0.0222 0.6793 ** 0.4973 ** 1
no_insurance_pct 0.1067 −0.3061 ** 0.3744 ** 0.3237 ** 0.2316 ** 1

** Correlation is significant at the 0.01 level (2-tailed).
Ambient_temp: Ambient temperature of Richmond, Virginia at 3 p.m. on 13 July 2017.
older_adults_pct: Percentage of older adults 65 years and over.
non-white_pct: Percentage of non-white population.
below_poverty_pct: Percentage of population with income below poverty level.
disability_pct: Percentage of population 20–64 years with a disability.
no_insurance_pct: Percentage of population with no health insurance coverage.

3.3. Multivariate Clustering Analysis

While the correlation analysis presented an overall picture of the relationships between
ambient temperature and vulnerable populations, it did not take into account the location
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factor and the spatial distribution of ambient temperatures in association with the distribu-
tion of vulnerable populations. To overcome these shortcomings, ArcGIS Pro’s multivariate
clustering analysis, as specified in Section 2.4, was carried out to identify unique spatial clus-
ters based on ambient temperature (Ambient_temp), non-white population (non_white_pct),
and population with income below poverty level (below_poverty_pct). The reasons why only
non_white_pct and below_poverty_pct were included in the multivariate clustering analysis
are as follows:

1. They have a positive relationship with ambient temperature (Table 2), or a greater risk
associated with urban heat;

2. Their relationship with ambient temperature is statistically significant (p < 0.01).

The multivariate clustering analysis produced box-plots (Figure 5a) illustrating the
unique combinations of standardized variable values associated with different clusters. The
horizontal axis in Figure 5a corresponds to the standardized values of ambient temperature
(Ambient_temp), percentage of non-white population (non_whte_pct), and percentage of
population with income below poverty level (below_poverty_pct). The standardized variable
values are derived by standardizing the raw variable values so that the resulting dataset
has a mean of 0 and a standard deviation of 1. Figure 5a also shows each cluster’s mean
standardized values of Ambient_temp, non_whte_pct, and below_poverty_pct. The width of
each box, shaded in gray, represents the interquartile range defined by the first and third
quartiles (i.e., the 25th and 75th percentiles). Plotting the mean standardized variable values
in relation to the interquartile ranges helps to visualize the extent of differences among
clusters when comparing their Ambient_temp, non_whte_pct, and below_poverty_pct.
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As shown in Figure 5, the multivariate clustering analysis derived four clusters, where
Block Groups within each cluster share very similar attributes of ambient temperature,
non-white population, and population with income below poverty level. According to the
multivariate clustering box-plots (Figure 5a), Cluster 1 represents Block Groups with above
average ambient temperature, but lower than average vulnerable populations. Cluster 2
represents Block Groups with the lowest ambient temperature and lower than average vul-
nerable populations. Cluster 4 represent Block Groups with average ambient temperature
and population with income below poverty level, but above average non-white population.
Among the clusters, Cluster 3 (Figure 5d) deserves the most attention, as it represents Block
Groups with the highest ambient temperature and vulnerable populations compared to the
other clusters.

4. Discussion
4.1. Ambient Temperature and Land Cover Types

The findings have affirmed that impervious surface contributes to higher ambient
temperatures, while tree coverage has a cooling effect on urban heat (Table 1). Although
this finding is by no means groundbreaking, the land cover dataset provided by the
Virginia Geographic Information Network (VGIN) has a much finer one-meter resolution
than satellite-based datasets; hence, a more precise result can be expected. In addition, it
should be noted that turf grass (e.g., lawn, golf course) also contributes to higher ambient
temperatures, even it is a type of vegetation. These findings are helpful in the context of
mitigating UHI effect discussed in Section 4.3 below.

4.2. Ambient Temperature and Vulnerable Populations

This study finds that vulnerable populations, except for older adults, tend to live
in areas with higher ambient temperatures (Table 2). This is especially true for the non-
white population and population with income below poverty level. Furthermore, these
vulnerable populations are spatially clustered in specific areas in the city (Figure 5d). These
vulnerable populations have limited heat-adaptive capacities, putting them at increased
risk of heat stress [24,27]. Being able to identify the specific Block Groups in the vulnerable
cluster would help policy makers and stakeholders prioritize and target mitigation mea-
sures to those areas. These findings have important implications for public policies and
environmental justice concerning equitable distribution of environmental resources [29,49],
such as planting trees or building neighborhood parks.

4.3. UHI Mitigation Measures

Given that impervious surface and tree coverage are the two leading land cover types
that have significant impacts on increasing or lowering ambient temperatures (Table 1),
the vulnerable clusters should be prioritized for mitigation measures accordingly. Within
the context of this study, implementing the following measures would help reduce the
intensity of urban heat and its negative effect on health.

4.3.1. High-Albedo Materials

Urban surfaces such as street pavements, parking lots, building envelopes, and roofs
absorb a large amount of solar radiation, which raises ambient temperatures and con-
tributes to the forming of UHIs. Increasing the albedo of the built environment can help
mitigate the UHI effect. For instance, cool pavement materials [50,51] and retro-reflective
materials [52,53] can be used to reflect solar radiation away from various urban surfaces,
which in turn would reduce the UHI effect in urban areas.

4.3.2. Tree Coverage and Green Space

In addition to applying high-albedo materials to urban surfaces, tree coverage and
green space have major cooling effects on urban heat [14,15,25]. Expanding tree coverage
and green space in urban areas can be accomplished by planting trees [54,55], creating
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parks and green space [56,57], and incorporating green roof and façade [58,59] into new
building design and retrofitting them to existing buildings. These measures can effectively
mitigate the UHI effect and beautify the urban environment.

4.4. Limitations and Future Research

While this study was a good exercise that provided some insights on the relationship
and spatial association of vulnerable populations and urban heat islands, it has a few
limitations, some of which are data-related and some of which methodological. Although
these limiting factors require additional attention and effort beyond the scope of the current
study, limitations do present themselves as future research opportunities and they are
discussed here.

• As a case study of the city of Richmond, research findings have limited generalizability.
However, methods and analyses utilized in the study are applicable to conduct similar
studies in other cities. This presents a great opportunity for a comparative study
to assess impacted populations and their vulnerabilities associated with urban heat
islands in different cities;

• Although the American Community Survey (ACS) [60] provides vital information
of vulnerable populations on a yearly basis, this study is limited by the available
ambient temperature dataset derived from temperature measurements collected in
2017. If such city-wide ambient temperature datasets are available on a yearly basis, a
longitudinal study would offer valuable insights on the changes of urban heat islands
and their association with vulnerable populations over time;

• This study explored the relationship and identified the spatial association of ambient
temperature and vulnerable populations. The findings can be enriched further by
studying additional factors that can help explain the spatial distribution patterns of
vulnerable populations in the city.

5. Conclusions

This study intends to assess urban heat islands and land cover types in relation to
vulnerable populations. The city of Richmond, Virginia was selected as the study area using
Census Block Group as the geographic unit of analysis. UHI was assessed by a city-wide
ambient temperature dataset. The land cover dataset was compiled from land cover map
tiles developed by VGIN. This study examined the impacts of land cover types on ambient
temperatures using regression analysis. Correlation analysis was performed to assess
the relationship between ambient temperature and vulnerable populations. Multivariate
clustering analysis was carried out to identify specific vulnerable areas in the city where
mitigation measures should be prioritized for implementation. Findings suggest that:
(1) impervious surface leads to higher ambient temperatures, while tree coverage has a
cooling effect on urban heat; (2) vulnerable populations, except for older adults, tend
to live in areas with higher ambient temperatures; and (3) vulnerable populations are
spatially clustered in specific areas in the city. These findings are in agreement with the
UHI literature from a similar context. Applying high-albedo materials to urban surfaces
and expanding tree coverage and green space can mitigate the effect of urban heat islands.
As a case study, findings of the study are not generalizable beyond Richmond without
additional research and validation. Nevertheless, the methodology developed in this study
is transferrable and can be applied to study other localities to further our understanding of
urban heat islands and land cover types in relation to vulnerable populations.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Earth 2022, 3 745

Data Availability Statement: The 2017 Urban Heat Island dataset of Richmond, Virginia was pro-
vided by Jeremy Hoffman (jhoffman@smv.org) of the Science Museum of Virginia. The Virginia
Land Cover Dataset released in 2016 by the Virginia Geographic Information Network (VGIN) is
available at https://vgin.maps.arcgis.com/home/item.html?id=d3d51bb5431a4d26a313f586c7c2c848
(accessed on 14 April 2022). The 2017 American Community Survey (ACS) 5-Year Estimates Detailed
Tables were downloaded from the US Census Bureau website at https://data.census.gov/cedsci/
(accessed on 22 April 2022).

Acknowledgments: The author is grateful to Jeremy Hoffman of the Science Museum of Virginia,
who provided the 2017 Urban Heat Island dataset of Richmond, Virginia.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Howard, L. The Climate of London, IAUC ed.; International Association for Urban Climate: Dublin, Irland, 1833; pp. 6–9. Available

online: http://urban-climate.org/documents/LukeHoward_Climate-of-London-V1.pdf (accessed on 28 March 2022).
2. Kolokotroni, M.; Giridharan, R. Urban Heat Island Intensity in London: An Investigation of the Impact of Physical Characteristics

on Changes in Outdoor Air Temperature during Summer. Sol. Energy 2008, 82, 986–998. [CrossRef]
3. Giannopoulou, K.; Livada, I.; Santamouris, M.; Saliari, M.; Assimakopoulos, M.; Caouris, Y.G. On the Characteristics of the

Summer Urban Heat Island in Athens, Greece. Sustain. Cities Soc. 2011, 1, 16–28. [CrossRef]
4. Rinner, C.; Hussain, M. Toronto’s Urban Heat Island—Exploring the Relationship between Land Use and Surface Temperature.

Remote Sens. 2011, 3, 1251–1265. [CrossRef]
5. Busato, F.; Lazzarin, R.M.; Noro, M. Three Years of Study of the Urban Heat Island in Padua: Experimental Results. Sustain. Cities

Soc. 2014, 10, 251–258. [CrossRef]
6. Kikon, N.; Singh, P.; Singh, S.K.; Vyas, A. Assessment of Urban Heat Islands (UHI) of Noida City, India Using Multi-Temporal

Satellite Data. Sustain. Cities Soc. 2016, 22, 19–28. [CrossRef]
7. Zheng, T.; Qu, K.; Darkwa, J.; Calautit, J.K. Evaluating Urban Heat Island Mitigation Strategies for a Subtropical City Centre (a

Case Study in Osaka, Japan). Energy 2022, 250, 123721. [CrossRef]
8. Julius, S.; Maxwell, K.; Grambsch, A.; Kosmal, A.; Larson, L.; Sonti, N. Chapter 11: Built Environment, Urban Systems, and Cities.

In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II; U.S. Global Change Research
Program: Washington, DC, USA, 2018; pp. 439–478.

9. Solecki, W.; Rosenzweig, C.; Parshall, L.; Pope, G.; Clark, M.; Cox, J.; Wiencke, M. Mitigation of the Heat Island Effect in Urban
New Jersey. Glob. Environ. Change Part B Environ. Hazards 2005, 6, 39–49. [CrossRef]

10. Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the
Thermal Properties of Asphalt Concrete. J. Environ. Manag. 2017, 197, 522–538. [CrossRef]

11. Unger, J. Intra-Urban Relationship between Surface Geometry and Urban Heat Island: Review and New Approach. Clim. Res.
2004, 27, 253–264. [CrossRef]

12. Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A Review on the Generation, Determination and Mitigation of Urban Heat Island. J. Environ.
Sci. 2008, 20, 120–128. [CrossRef]

13. Yuan, F.; Bauer, M.E. Comparison of Impervious Surface Area and Normalized Difference Vegetation Index as Indicators of
Surface Urban Heat Island Effects in Landsat Imagery. Remote Sens. Environ. 2007, 106, 375–386. [CrossRef]

14. Zhou, W.; Qian, Y.; Li, X.; Li, W.; Han, L. Relationships between Land Cover and the Surface Urban Heat Island: Seasonal
Variability and Effects of Spatial and Thematic Resolution of Land Cover Data on Predicting Land Surface Temperatures. Landsc.
Ecol. 2014, 29, 153–167. [CrossRef]

15. Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the Spatial Configuration of Trees on Urban Heat Mitigation: A Comparative
Study. Remote Sens. Environ. 2017, 195, 1–12. [CrossRef]

16. U.S. Environmental Protection Agency. Heat Island Impacts. Available online: https://www.epa.gov/heatislands/heat-island-
impacts (accessed on 19 May 2022).

17. Santamouris, M. Recent Progress on Urban Overheating and Heat Island Research. Integrated Assessment of the Energy, Environ-
mental, Vulnerability and Health Impact. Synergies with the Global Climate Change. Energy Build. 2020, 207, 109482. [CrossRef]

18. Somers, K.A.; Bernhardt, E.S.; McGlynn, B.L.; Urban, D.L. Downstream Dissipation of Storm Flow Heat Pulses: A Case Study
and Its Landscape-Level Implications. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 281–297. [CrossRef]

19. Sarofim, M.C.; Saha, S.; Hawkins, M.D.; Mills, D.M.; Hess, J.; Horton, R.; Kinney, P.; Schwartz, J.; Juliana, A.S. Chapter 2:
Temperature-Related Death and Illness. In The Impacts of Climate Change on Human Health in the United States: A Scientific
Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2016; pp. 43–68.

20. U.S. Environmental Protection Agency. Heat Islands and Equity. Available online: https://www.epa.gov/heatislands/heat-
islands-and-equity (accessed on 20 May 2022).

21. Reckien, D.; Creutzig, F.; Fernandez, B.; Lwasa, S.; Tovar-Restrepo, M.; Mcevoy, D.; Satterthwaite, D. Climate Change, Equity and
the Sustainable Development Goals: An Urban Perspective. Environ. Urban. 2017, 29, 159–182. [CrossRef]

https://vgin.maps.arcgis.com/home/item.html?id=d3d51bb5431a4d26a313f586c7c2c848
https://data.census.gov/cedsci/
http://urban-climate.org/documents/LukeHoward_Climate-of-London-V1.pdf
http://doi.org/10.1016/j.solener.2008.05.004
http://doi.org/10.1016/j.scs.2010.08.003
http://doi.org/10.3390/rs3061251
http://doi.org/10.1016/j.scs.2013.05.001
http://doi.org/10.1016/j.scs.2016.01.005
http://doi.org/10.1016/j.energy.2022.123721
http://doi.org/10.1016/j.hazards.2004.12.002
http://doi.org/10.1016/j.jenvman.2017.03.095
http://doi.org/10.3354/cr027253
http://doi.org/10.1016/S1001-0742(08)60019-4
http://doi.org/10.1016/j.rse.2006.09.003
http://doi.org/10.1007/s10980-013-9950-5
http://doi.org/10.1016/j.rse.2017.03.043
https://www.epa.gov/heatislands/heat-island-impacts
https://www.epa.gov/heatislands/heat-island-impacts
http://doi.org/10.1016/j.enbuild.2019.109482
http://doi.org/10.1111/1752-1688.12382
https://www.epa.gov/heatislands/heat-islands-and-equity
https://www.epa.gov/heatislands/heat-islands-and-equity
http://doi.org/10.1177/0956247816677778


Earth 2022, 3 746

22. Hamstead, Z.A.; Farmer, C.; McPhearson, T. Landscape-Based Extreme Heat Vulnerability Assessment. J. Extrem. Events 2018,
05, 1850018. [CrossRef]

23. Huang, G.; Zhou, W.; Cadenasso, M.L. Is Everyone Hot in the City? Spatial Pattern of Land Surface Temperatures, Land Cover
and Neighborhood Socioeconomic Characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92, 1753–1759. [CrossRef]

24. Voelkel, J.; Hellman, D.; Sakuma, R.; Shandas, V. Assessing Vulnerability to Urban Heat: A Study of Disproportionate Heat
Exposure and Access to Refuge by Socio-Demographic Status in Portland, Oregon. Int. J. Environ. Res. Public Health 2018,
15, 640. [CrossRef]

25. Zhou, W.; Huang, G.; Pickett, S.T.A.; Wang, J.; Cadenasso, M.L.; McPhearson, T.; Grove, J.M.; Wang, J. Urban Tree Canopy Has
Greater Cooling Effects in Socially Vulnerable Communities in the US. One Earth 2021, 4, 1764–1775. [CrossRef]

26. Landry, S.M.; Chakraborty, J. Street Trees and Equity: Evaluating the Spatial Distribution of an Urban Amenity. Environ. Plan A
2009, 41, 2651–2670. [CrossRef]

27. Drescher, M. Urban Heating and Canopy Cover Need to Be Considered as Matters of Environmental Justice. Proc. Natl. Acad. Sci.
USA 2019, 116, 26153–26154. [CrossRef] [PubMed]

28. Riley, C.B.; Gardiner, M.M. Examining the Distributional Equity of Urban Tree Canopy Cover and Ecosystem Services across
United States Cities. PLoS ONE 2020, 15, e0228499. [CrossRef] [PubMed]

29. Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood Microclimates and Vulnerability to Heat Stress.
Soc. Sci. Med. 2006, 63, 2847–2863. [CrossRef]

30. Jusuf, S.K.; Wong, N.H.; Hagen, E.; Anggoro, R.; Hong, Y. The Influence of Land Use on the Urban Heat Island in Singapore.
Habitat Int. 2007, 31, 232–242. [CrossRef]

31. Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Bianchi, R.; Paganini, M. Impact of Spatial Resolution and Satellite Overpass Time on
Evaluation of the Surface Urban Heat Island Effects. Remote Sens. Environ. 2012, 117, 50–56. [CrossRef]

32. Mirzaei, P.A. Recent Challenges in Modeling of Urban Heat Island. Sustain. Cities Soc. 2015, 19, 200–206. [CrossRef]
33. Orusa, T.; Mondino, E.B. Landsat 8 Thermal Data to Support Urban Management and Planning in the Climate Change Era: A Case

Study in Torino Area, NW Italy. In Proceedings of the Remote Sensing Technologies and Applications in Urban Environments IV.,
Strasbourg, France, 2 October 2019; Volume 11157, pp. 133–149. [CrossRef]

34. Yokobori, T.; Ohta, S. Effect of Land Cover on Air Temperatures Involved in the Development of an Intra-Urban Heat Island.
Clim. Res. 2009, 39, 61–73. [CrossRef]

35. Makido, Y.; Shandas, V.; Ferwati, S.; Sailor, D. Daytime Variation of Urban Heat Islands: The Case Study of Doha, Qatar. Climate
2016, 4, 32. [CrossRef]

36. Voelkel, J.; Shandas, V. Towards Systematic Prediction of Urban Heat Islands: Grounding Measurements, Assessing Modeling
Techniques. Climate 2017, 5, 41. [CrossRef]

37. Shandas, V.; Voelkel, J.; Williams, J.; Hoffman, J. Integrating Satellite and Ground Measurements for Predicting Locations of
Extreme Urban Heat. Climate 2019, 7, 5. [CrossRef]

38. Virginia Geographic Information Network (VGIN). Virginia Land Cover Dataset—Overview. Available online: https://vgin.
maps.arcgis.com/home/item.html?id=d3d51bb5431a4d26a313f586c7c2c848 (accessed on 15 May 2022).

39. ESRI. Multivariate Clustering, ArcGIS Pro Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-
reference/spatial-statistics/multivariate-clustering.htm (accessed on 19 May 2022).

40. U.S. Census Bureau. 2020 Census. Available online: https://www.census.gov/2020census (accessed on 15 May 2022).
41. Weather Spark. Richmond Climate, Weather by Month, Average Temperature (Virginia, United States). Available online: https:

//weatherspark.com/y/20906/Average-Weather-in-Richmond-Virginia-United-States-Year-Round (accessed on 20 May 2022).
42. Hoffman, J. Where Do We Need Shade? Mapping Urban Heat Islands in Richmond, Virginia. Available online: https://www.

climate.gov/news-features/climate-case-studies/where-do-we-need-shade-mapping-urban-heat-islands-richmond (accessed
on 15 May 2022).

43. ESRI. Zonal Statistics as Table, ArcGIS Pro Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-
reference/spatial-analyst/zonal-statistics-as-table.htm (accessed on 19 May 2022).

44. Virginia Geographic Information Network (VGIN). Land Cover Dataset Download Application. Available online: https:
//vgin.maps.arcgis.com/apps/View/index.html?appid=d3d51bb5431a4d26a313f586c7c2c848 (accessed on 15 May 2022).

45. ESRI. Clip, ArcGIS Pro Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/
clip.htm (accessed on 14 June 2022).

46. ESRI. Append, ArcGIS Pro Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-
management/append.htm (accessed on 14 June 2022).

47. ESRI. Tabulate Intersection, ArcGIS Pro Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-
reference/analysis/tabulate-intersection.htm (accessed on 19 May 2022).

48. ESRI. How Multivariate Clustering Works, ArcGIS Pro Documentation. Available online: https://pro.arcgis.com/en/pro-app/
latest/tool-reference/spatial-statistics/how-multivariate-clustering-works.htm (accessed on 16 May 2022).

49. Jesdale, B.M.; Morello-Frosch, R.; Cushing, L. The Racial/Ethnic Distribution of Heat Risk–Related Land Cover in Relation to
Residential Segregation. Environ. Health Perspect 2013, 121, 811–817. [CrossRef] [PubMed]

50. Carnielo, E.; Zinzi, M. Optical and Thermal Characterisation of Cool Asphalts to Mitigate Urban Temperatures and Building
Cooling Demand. Build. Environ. 2013, 60, 56–65. [CrossRef]

http://doi.org/10.1142/S2345737618500185
http://doi.org/10.1016/j.jenvman.2011.02.006
http://doi.org/10.3390/ijerph15040640
http://doi.org/10.1016/j.oneear.2021.11.010
http://doi.org/10.1068/a41236
http://doi.org/10.1073/pnas.1917213116
http://www.ncbi.nlm.nih.gov/pubmed/31848252
http://doi.org/10.1371/journal.pone.0228499
http://www.ncbi.nlm.nih.gov/pubmed/32045427
http://doi.org/10.1016/j.socscimed.2006.07.030
http://doi.org/10.1016/j.habitatint.2007.02.006
http://doi.org/10.1016/j.rse.2011.04.042
http://doi.org/10.1016/j.scs.2015.04.001
http://doi.org/10.1117/12.2533110
http://doi.org/10.3354/cr00800
http://doi.org/10.3390/cli4020032
http://doi.org/10.3390/cli5020041
http://doi.org/10.3390/cli7010005
https://vgin.maps.arcgis.com/home/item.html?id=d3d51bb5431a4d26a313f586c7c2c848
https://vgin.maps.arcgis.com/home/item.html?id=d3d51bb5431a4d26a313f586c7c2c848
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/multivariate-clustering.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/multivariate-clustering.htm
https://www.census.gov/2020census
https://weatherspark.com/y/20906/Average-Weather-in-Richmond-Virginia-United-States-Year-Round
https://weatherspark.com/y/20906/Average-Weather-in-Richmond-Virginia-United-States-Year-Round
https://www.climate.gov/news-features/climate-case-studies/where-do-we-need-shade-mapping-urban-heat-islands-richmond
https://www.climate.gov/news-features/climate-case-studies/where-do-we-need-shade-mapping-urban-heat-islands-richmond
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/zonal-statistics-as-table.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/zonal-statistics-as-table.htm
https://vgin.maps.arcgis.com/apps/View/index.html?appid=d3d51bb5431a4d26a313f586c7c2c848
https://vgin.maps.arcgis.com/apps/View/index.html?appid=d3d51bb5431a4d26a313f586c7c2c848
https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/clip.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/clip.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/append.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/append.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/tabulate-intersection.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/tabulate-intersection.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/how-multivariate-clustering-works.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/how-multivariate-clustering-works.htm
http://doi.org/10.1289/ehp.1205919
http://www.ncbi.nlm.nih.gov/pubmed/23694846
http://doi.org/10.1016/j.buildenv.2012.11.004


Earth 2022, 3 747

51. Qin, Y. A Review on the Development of Cool Pavements to Mitigate Urban Heat Island Effect. Renew. Sustain. Energy Rev. 2015,
52, 445–459. [CrossRef]

52. Rossi, F.; Pisello, A.L.; Nicolini, A.; Filipponi, M.; Palombo, M. Analysis of Retro-Reflective Surfaces for Urban Heat Island
Mitigation: A New Analytical Model. Appl. Energy 2014, 114, 621–631. [CrossRef]

53. Qin, Y.; Liang, J.; Tan, K.; Li, F. A Side by Side Comparison of the Cooling Effect of Building Blocks with Retro-Reflective and
Diffuse-Reflective Walls. Sol. Energy 2016, 133, 172–179. [CrossRef]

54. Takebayashi, H.; Kimura, Y.; Kyogoku, S. Study on the Appropriate Selection of Urban Heat Island Measure Technologies to
Urban Block Properties. Sustain. Cities Soc. 2014, 13, 217–222. [CrossRef]

55. Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-Dependent Interactions between Tree Canopy Cover and Impervious
Surfaces Reduce Daytime Urban Heat during Summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [CrossRef]

56. Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the
Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155. [CrossRef]

57. Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The City and Urban Heat Islands: A Review of Strategies to Mitigate
Adverse Effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [CrossRef]

58. Wonorahardjo, S.; Sutjahja, I.M.; Mardiyati, Y.; Andoni, H.; Achsani, R.A.; Steven, S.; Thomas, D.; Tunçbilek, E.; Arıcı, M.; Rahmah,
N.; et al. Effect of Different Building Façade Systems on Thermal Comfort and Urban Heat Island Phenomenon: An Experimental
Analysis. Build. Environ. 2022, 217, 109063. [CrossRef]

59. Wang, X.; Li, H.; Sodoudi, S. The Effectiveness of Cool and Green Roofs in Mitigating Urban Heat Island and Improving Human
Thermal Comfort. Build. Environ. 2022, 217, 109082. [CrossRef]

60. U.S. Census Bureau. About the American Community Survey. Available online: https://www.census.gov/programs-surveys/
acs/about.html (accessed on 17 May 2022).

http://doi.org/10.1016/j.rser.2015.07.177
http://doi.org/10.1016/j.apenergy.2013.10.038
http://doi.org/10.1016/j.solener.2016.03.067
http://doi.org/10.1016/j.scs.2014.01.008
http://doi.org/10.1073/pnas.1817561116
http://doi.org/10.1016/j.landurbplan.2010.05.006
http://doi.org/10.1016/j.rser.2013.05.057
http://doi.org/10.1016/j.buildenv.2022.109063
http://doi.org/10.1016/j.buildenv.2022.109082
https://www.census.gov/programs-surveys/acs/about.html
https://www.census.gov/programs-surveys/acs/about.html

	Introduction 
	Study Aim and Scope 
	Study Area and Geographic Unit of Analysis 

	Materials and Methods 
	Ambient Temperature 
	Land Cover Types 
	Vulnerable Populations 
	Methodology 

	Results 
	Regression Analysis of Ambient Temperature and Land Cover Types 
	Correlation Analysis of Ambient Temperature and Vulnerable Populations 
	Multivariate Clustering Analysis 

	Discussion 
	Ambient Temperature and Land Cover Types 
	Ambient Temperature and Vulnerable Populations 
	UHI Mitigation Measures 
	High-Albedo Materials 
	Tree Coverage and Green Space 

	Limitations and Future Research 

	Conclusions 
	References

