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Abstract: Soil salinity is a major threat to the sustainability of agricultural production systems and has
defeated civilisations whenever the cost of remediation exceeded the benefits. Among the reasons for
this is the complexity of the plant-water-soil nexus and that the causes of salinity are often separated
from the damage in time and space. There have been many activities to address salinity, and while
good progress has occurred in commercially attractive irrigation areas, many apparently successful
techniques, such as intercropping obligate halophytes with conventional crops, processing halophyte
meals for human consumption and new uses for saline waters, have not been taken up, although the
benefit in ecological terms is understood. There are limited payments available for some ecosystem
services, but these are not yet a very recognised market for land users, whose agency is essential for
long term success and addressing this requires institutional evolution. We conclude, from Australian
experience, that a more concerted effort, perhaps initiated by a philanthropist, is needed to show
merchants and agencies how a range of payments for ecosystem services can be turned into true
markets in an aggregate way so the ‘knowledge of what can be done can be transformed into benefit’.

Keywords: salinity; natural resource management; ecosystem services; markets; exchanges;
transformational change; halophyte agriculture

1. Introduction

Coevolution of plants and animals, including humans, has produced a situation
where 7.8 billion people are now sustained by agricultural production based on soils and
water favourable to high net primary production (NPP). Population growth impelled
this coevolution [1,2]. By 2050, Earth’s population is predicted to reach 9.9B [3], which
will require a doubling of the current food production to ensure food security. Global
climate change and rapid expansion of the world’s economy also adds to pressures on
the environmental systems that sustain the production of goods and services [4], with
economic penalties exceeding 170B p.a. [3].

Over the last 50 years, per capita availability of arable land has decreased by about
two-fold, due to increasing rates of urbanisation and land degradation caused by various
environmental constraints [5], pushing agriculture into marginal lands. In most cases,
such lands could be made productive only by irrigation. Worldwide, current freshwa-
ter withdrawal for irrigation purposes ranges between 25 and 80% of total freshwater
resources [5], and is only going to increase, given the growing frequency and severity of
drought events [6,7]. However, reliance on irrigation for agricultural production comes
with an additional and a very substantial issue of land salinisation [8], with between three
and six tons of salt (primarily NaCl) added to each hectare of farmland every year with
irrigation water [5]. Thus, we have no choice but to make better use of the landscapes we
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have already exploited and accept the fact that agriculture in the 21st century will inevitably
become saline.

Among the complexity of salinity is the issue of scale. While the degradation is local
many of the associated benefits, including biodiversity gain and climate mitigation accrue
at aggregate scales or in locations remote from where the problem originated. Although
salinity is but one form of damage to the natural resource base being carried by water,
its damage is insidious and incurred also by associated infrastructure. This is often not
considered in programs to address salinity at its source even though the damage to ancillary
installations and equipment in many situations may exceed that to agriculture per se. One
authoritative analysis for the Murray Darling Basin of Australia concluded that salinity
damage to agriculture was only about 32% of the total damage to the Australian economy,
the rest being damage to urban structures, logistical infrastructure, and water reticulation
systems [9].

Saline water per se, particularly saline effluents that also pollute other water bodies,
also constitutes a very significant related problem [10]. Dealing with these waters incurs
cost, but also represents some opportunities when treated in an integrated way. The
quantities are significant [11] and, given the predicted decline in availability of freshwater
resources [12], may represent a substantial economic opportunity.

In this article, we take a wider look at land and waterscapes, seeing them as systems
that link damage and repair across time and space to bridge the divide between the main
beneficiaries of ecosystem services and the main actors, the land users. We first discuss the
land-soil-water nexus of crop reduction by salinity and the evolution of ideas about how to
shape these better. We then discuss the livelihood needs of land users to shape these better
and the limitations of the single issue and reward approach common hitherto. We discuss
the different ecosystem benefits and payments that have been useful, but insufficient in
isolation, often due to existing policy constraints with those in Australia as an example.
Lastly, a technical and economic tool that links more of the possible income sources and
services required for the remediation of land and water in several land use categories based
on experience in Australia is adapted and presented.

2. Salinity, Area of, Distribution in Australia and Severity of

The National Land and Water Resources Audit’s dryland salinity assessment, in col-
laboration with the states and territories, defined the distribution and impact of dryland
salinity across Australia. Best available estimates in 2000 showed that about 5.7 million
hectares of land were within regions identified as being at risk of or affected by dry-
land salinity.

2.1. Primary and Secondary Salinity

Primary salinity occurs naturally and is the result of rainfall interacting with geograph-
ical features over thousands of years. Secondary salinity is the result of human land use
and either produces more salt or causes primary salinity to rise to the surface of the land.
Western Australia is most affected by salinity in Australia, with around 70% of arable land
suffering from land salinisation. Over 2 million hectares are currently affected, and around
4 million hectares of land are currently listed as high risk, and 50% of divertible water is
already considered overly saline.

Salt becomes a management issue when it threatens assets such as water resources,
biodiversity, agriculture, and infrastructure. Water can mobilise salt stored in the ground
and transport it vertically and horizontally. Effective management of salinity requires an
understanding of its causes, location, and behaviour in the landscape [13].

Dryland salinity is seen as one of Australia’s most serious environmental and resource
management problems. There have been major government programmes in place for over
a decade aiming to increase farmers’ adoption of management practices for salinity preven-
tion. Farmers have responded, although, not on the scale recommended by hydrologists,
and salinity is continuing to worsen. Why is this so?
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2.2. The Farmer’s Perspective
2.2.1. Farmer Responses to Salinity

Encouraged by policies such as the National Landcare Program, many farmers have
been making personal sacrifices and financial commitments to salinity prevention under
the impression that the treatments have been officially sanctioned and will be sufficient.
Although the sacrifices of time, labour, and finance loom large to these farmers, we now
know that the treatments implemented are too small by an order of magnitude or more to
significantly reduce eventual areas of shallow water tables, although, local effects providing
worthwhile delays are likely. In salinity-prone regions there are only localised areas where
the water table has been brought under control.

Over 50 percent of farmers in study in WA reported that they had not observed any
benefit at all from their land conservation investment, so the prospects for much larger
investments would appear very poor.

Lack of awareness of salinity is probably not a major factor explaining slow and low
adoption of the recommended practices. Rather, the major factors relate to the economic
costs and benefits of current treatment options, the difficulties of trialling the options, long
time scales, externalities, and social issues. This combination of factors means that the
problem in many regions is extremely adverse to rapid adoption, probably more so than
for any other agricultural issue in Australia. In other words, farmer reluctance to adopt the
radical changes being recommended is completely understandable and, indeed, reasonable
from the farmers’ perspectives [14]. Curtis et al. [15] emphasised lack of financial capacity
as the greatest impediment to change. Others have highlighted the profitability of an
innovation as being a particularly important factor influencing its attractiveness to farmers.
Economic modelling indicates that on-farm benefits from salinity prevention are likely to
contribute little to the economic attractiveness to farmers of switching to perennial-based
farming systems based on long lived crops, agro-forestry, or even halophytic shrubs. Thus,
the consideration of salinity prevention does not change the earlier broad conclusion that
the on-farm economics of current perennial options are adverse in most locations. Therefore,
faced with clear evidence that land users cannot be expected to underwrite the repair of a
nation’s environmental woes, the search for more just and equitable financial incentives
must be found and mechanisms such as payment to land users for the ecosystem goods
and services flowing from their particular piece of land deserves more consideration.

A further consideration is that saline soils and associated saline water are considered
differently institutionally and by different stakeholders. Saline water is likely to be a bigger
threat to infrastructure of interest to local government or roads and railway operators than
to land users. However, such resources, that might be available to land users, treated as
a resource may have significant value. For example, to substitute for valuable potable
water, or ot earn income from new unconventional uses, land-based aquaculture, power
generation etc. as also reviewed below. Salinity is a broader system than is commonly
supposed by most institutions that have addressed salinity historically.

2.2.2. Institutional Constraints and Opportunities

The complex institutional situation faced by farmers in Australia is a constraint,
but some opportunities have emerged from attempts to overcome this. Constitutional
responsibility for land and water is a state responsibility through different departments
while most taxing power and so ability to invest public money resides with the Federal
Government. Local Government is largely funded locally but the rate base tends to be
small towns concerned with infrastructure and services rather than rural land, now in the
hands of fewer land users. Although salinity is a real risk to this infrastructure, they lack
sufficient funds to address these comprehensibly.

There are opportunities to direct investment towards activities to promote ecological
resilience and the electorate has demonstrated a willingness to fund this in a significant
way. As reviewed below, institutional innovations have occurred to assist land users to
access this, but these have in the main been dominated by Governments with short term
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time horizons and the commercial sector interested in dealing with ecosystem services,
such as carbon credits, have not found a way to relate to the broader range services required
for success and to other payments for eco systems so it has been hard for land users to see a
real market in the range of activities necessary to address salinity and related saline water.

There is an opportunity for interested stakeholders to enable land users to access more
of the payments available for ecosystem payments with an evolution of the institutional
systems reviewed below. Success in reducing salinity impacts would in turn increase both
farmer’s productivity and net primary productivity (NPP) and so establish a new virtuous
cycle where the reverse exists now.

3. Soil Salinity and Plant Productivity

The absolute majority of staple crops are classified as glycophytes and show a very
significant growth reduction when grown in the presence of salt in the root zone [16]. This is
specifically true for wheat, rice, and maize—three cereal crops that are responsible for over
50% of calory intake by humans. For example, a 50% reduction in yield has been measured
for rice at 80 mM NaCl, while for durum wheat this threshold is ~100 mM [16]. Salt tolerance
was present in wild crop relatives but then lost during domestication process [17–19],
alongside with tolerance to other abiotic stresses. This is hardly surprising, as human
selection targeted mostly agronomical traits such as reduced seed shattering, absence of the
secondary dormancy, and fewer and more upright tillers (in cereals) or fruit size, shape, and
an ease of harvesting and/or transportation (in horticultural crops) [20,21]. Moreover, a
human-driven selection of crop species for the Na+ exclusion trait (the mainstream trend in
breeding over the last several decades) has come with a high carbon (ATP) cost for osmotic
adjustment [22], thus imposing significant penalties on production.

While the need to improve salinity stress tolerance in staple crops is now recognised
as one of the key priorities [23], the progress in a field is much slower than required, due to
highly complex physiological and genetic nature of this trait. In this context, there is no
single gene that can be targeted by molecular editing to improve salinity tolerance, and
assembling a dozen of complementary mechanisms in one ideotype via marker-assisted
selection is also not practical. The most promising approach would be to re-domesticate
current crops for the lost halophytism [5]. However, this requires a major shift in the
breeding paradigms and takes time. So, what can we do in the short-term to handle
this issue?

4. Halophytes as Cash Species

A small group of terrestrial plants can not only tolerate substantial amounts of NaCl in
soil solution but also benefit from its presence [24–26]. These plants are termed halophytes
and represent a valuable resource for both using salt-affected lands and utilizing low-quality
saline water (Figure 1) [27].

Halophytes have long been advocated for use as forage, fodder, oil seeds, and phar-
maceuticals [27–30]. The use of halophytes as salad vegetables have commanded a high
price [31], although, the choice of species is quite limited. This is hardly surprising as
according to eHaloph, a registry of all halophyte species [32]: out of some 351,000 species
adapted to fresh water, only 1386 are listed as salt tolerant, and only 525 can tolerate 70%
of seawater. Thus, only about 0.15% of all flowering plants may be classified as true halo-
phytes. As a result of this, the use of halophytes in conventional agriculture is extremely
limited, with the notable exception of quinoa. Quinoa (Chenopodium quinoa) is an annual
pseudo-cereal crop originating from the Andes that possesses exceptional nutritional quali-
ties and a superior salinity stress tolerance [19,33,34]. Compared to conventional grains,
quinoa seeds lack gluten, have a superior ratio of proteins, lipids, and carbohydrates, a
higher content of essential amino acids, and are rich in minerals and vitamins [19], and
its cultivation is expanding globally [35]. However, a broad application of quinoa as an
alternative pseudo-cereal crop in Australia is limited by the fact that most quinoa cultivars
have short-day requirements [19], and this species also does not possess sufficient heat
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tolerance (being originated from high-altitude regions in South America). Thus, the future
of quinoa as a crop in Australia requires its further domestication for the above traits [3,19].
Selections of Distichlis palmeri have also been investigated encouragingly but inconclusively
for this purpose, as it is a true halophyte, is also gluten free, and has a high content of
essential amino acids [36–39].
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Halophytes may also represent a highly valuable resource for desalination and phy-
toremediation of degraded lands [27,40]. The studies of soil–plant relationships are amongst
the oldest in science, beginning at least with Aristotle. The technology of irrigation arose
even earlier along with practices to leach the damaging salts. However, long term irrigation
in dryer regions usually led to substantial salt build up in the soil, impacting its struc-
ture and chemical properties, and eventually its sustainability as an agricultural system.
Efforts to delay or ameliorate these effects through leaching these salts differs between
soils and the science of irrigation hydraulics and soil treatments continues to evolve with
new materials, irrigation technologies and markets. Pasture improvement programs in
salt-affected regions throughout the world have used halophytes and salt tolerant shrubs
and grass species [28,41]. Trees and shrubs can be valuable complements to grasslands
because, being perennial deep-rooted species, they can significantly reduce saline shallow
groundwater tables.

5. Towards a Systems Approach to Halophyte Agriculture

The parsimonious course for land managers is to address only the needs of their
location and to consider their situation as a new system rather than a particular problem
such as the wrong plant or soil treatment [42]. This may result in learning to live with
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and to take advantage of salinity where it cannot be removed or sequestered away from
‘productive’ plants and land.

Halophytes utilise a broad range of physiological and anatomical mechanisms assisting
their adaptation to saline environments [43]. This includes using Na+ and Cl− as ‘cheap os-
motica’ to maintain cell turgor [22,25,44], as well as operate their stomata [45], pronounced
tissue succulence that allows more efficient vacuolar salt sequestration [46,47], the presence
of highly specialised structures such as salt glands or epidermal bladder cells, [48–50],
more efficient redox homeostasis, and more efficient chloroplast operation [8,51,52]. These
adaptations are individual genetic traits, usually not dependent on each other as assem-
blages and no halophytes possess all of them. Some of them may be required for conditions
of extreme salinities, while others may be more essential for less severe environments.
The selection of halophyte plant species is thus context and system specific, of which the
degree of salt tolerance may not be as significant as some other factor, such as tolerance of
waterlogging [53,54], or a high value product type. In many circumstances a combination of
halophytes may be the best low risk approach to ameliorating the salinised situation. Many
saline areas are a mosaic of still productive and degrading regions, usually for topographic
reasons so the selection of plants may include trees, conventional glycophytes and a range
of halophytes such that they reinforce each other bio-physically across a landscape [55,56].
A very promising technique here is companion cropping, or intercropping, where the
obligate halophyte thrives in saline conditions, uses some of the saline water, and can
remove some soil salt through its salt glands [43] and benefits the growth and production
of the associate usual crop, for example tomatoes, [57].

Soil conditions can vary significantly over short distances and assessing and planning
for these can be costly [58]. In many circumstances a cost-effective means to map these is
required for efficient establishment and to monitor differences over time if the associated
ecosystem services are to be marketed [59,60].

Very often the cost, time, and this complexity defeats individual farmers or land
managers, although, they may prefer to address the problem if they perceive a solution to
be possible, even if the return is lower. This may be for aesthetic reasons, or to avoid the
problem spreading to other areas if not addressed [61]. The answer pursued under many
officially supported programs to address land degradation is to fund projects justified
by the ecosystem or public good values of the investment, but these interventions may
not persist unless the actions are seen by the farmer or land manager to be profitable and
largely conform with their experience and values, a view well reviewed by Squires [62,63].

6. Economic Rationale and Decision Making

Most investigators researching ways to deal with salinity provide some economic jus-
tification for their suggestions. This is true for both agricultural, livestock, and aquaculture
production [39,64–66], as well as remediation of mined, contaminated, or desert soils [67],
including reducing saline water tables [68–70]. A similar analysis has been conducted for
the use of halophytes in carbon sequestration [67,71–74], and for the overall role in land-
scape management [40,63,75–77]. However, the net effect is to miss the effect of multiple
benefits (except for the landscape view), and importantly, not to view their idea from the
perspective of the farmer or land manager whose agency is essential if the suggestions are
to be taken up in the real world [60].

The above reviewed literature does not sufficiently deal with the difference between
the overall economic benefit of regenerating degraded salt land and the financial benefits
to the investing land manager whose agency is essential if change on the ground is to occur.
Ignoring the immediate needs of rural populations is one commonality that has led to the
failure of many similar Natural Resource Management (NRM) projects in the past, in the
face of widespread interest in ecosystem services [78]. Ecological restoration of salinised
land has been successful in many different locations around the world, even in severely
degraded regions where lives and livelihoods were in jeopardy but if it has not really suited
the land user/manager it has not been sustained [60,63,79].
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Salinity is but one, relatively intractable, form of land or landscape degradation but its
impacts, for example biodiversity loss and soil structural change, are common to others such
as erosion and acidity. Astute choice of halophyte(s) can be used to reverse these impacts
by improving biodiversity, biomass production above and below ground, soil structure,
water holding and cation exchange capacity, and to sequester carbon. Yet, only the above
ground gain in biomass can be easily monetised by the land manager and this is often
insufficient incentive. Some farmers also invest to address salinity for aesthetic reasons;
land conservation ethics are important where there is community support to address social
decline in degrading landscapes but are not necessarily applicable in all landscapes and
not sufficient in themselves [14]. Public or other external investment support is necessary
to generate the ecosystem, public good, aspects of rehabilitating saline land and water,
considered externalities.

As implied, these are benefits (or costs) that occur incidentally to the main purpose of
an investment. They can be encouraged (or discouraged) by deliberate policies or payments
to influence land managers. Australia has investigated and successfully used salinity
credits as a specific return for investments addressing salinity, usually to reduce salinity in
irrigation water and irrigation runoff. These have been mostly successful at the interstate
level to account to each other and the electorate for state government investments, and in
connection with meeting ‘end of valley targets’, which relate to regional investments [80].
They have been much less used for individual credits, because of the difficulty of monitoring
changes in salinity at this scale [81]. For land managers to access such income opportunities
some collaborative arrangements are necessary.

7. An Essential Role of the Land User

Farmers and other land users are most interested in restoration of their own land. In
this context the goal is not about returning damaged land to some notional pristine state, it
is about restoring ecosystems to an acceptable level of functionality, a problem common to
many disturbed lands such as mined land as discussed by Tongway et al. [82].

The difficult task for the land manager is to decide what is possible and profitable,
particularly considering the scale and technical complexity. The difficult task for the external
financier is to make a cost effective and accountable connection with land managers who
can deliver the desired ecosystem services.

Much institutional attention in planning is directed towards stakeholder consultation,
‘learning from the farmer’, and in supporting direct investment to demonstrate successful
technology and approaches to restoring saline lands. However, Australian, US, and other
international experience has been that official support is costly and the activity ceases once
the official support ends [83]. This problem can only be solved by the additional activity, be
it payment for ecosystem services or some novel use of degraded water or land, becoming
a real market seen of value to the land manager. This in turn will require a transformational
change in how natural resources are managed and this requires a much more sustained
approach, as articulated in Young [84] and Leake [79].

Putting these two world views together, that of the farmer or land manager on one
hand and the investor in ecosystem services on the other, is the desired outcome of this
transformation and for this to occur some mechanism, such as that depicted in Figure 2, is
required to cross this divide, to ‘bridge the gap’ [60].

This illustrates an approach to addressing complexity in a collaborative way, between
afflicted farmers in a district or watershed, between afflicted people in a region connected
hydrologically to land managers seen to be causing the damage, although separated
in time and space, and between external agents interested in supporting activities to
address salinity.
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A key element of this system is the focus on finding and supporting an adequate
source of income for the farmer and other land manager’s investment in these activities, as
their agency is essential if the knowledge about what can be done is to be transformed into
benefits. This approach shifts the context of land use planning and management towards
the land manager while retaining something of the benefits of scale, technology, markets,
and availability of finance inherent in official schemes. It gains in appreciation of local
variations that occur in many landscapes, particularly saline ones, and in the sense of
ownership that results from participatory approaches. It rests on experience with NRM in
Australia and elsewhere [85,86], and in small holder extension [87] and might operate as
an ‘exchange’ at a regional level, much as with commodity futures.

The left-hand side of Figure 2 depicts non-land manager inputs of (i) official policies
and incentives intended to facilitate or enable land manager action, (ii) external finance
or markets directed towards ecosystem services, and (iii) a land manager and farmer
representative board or committee to enable collaborative action, in the long run to be
funded as a secretarial and brokerage service. The right-hand side divides the possible
actions into activities to match the farmer’s particular soil, water, and market circumstances
to specific plant-based solutions, which may vary across their landscape and include some
continuing fresh-water plants. This may yield income from some traditional and some
new products from the regenerated land. This will enable ‘rezoning’ of unsuitable land as
reserve land, for example, bio-diversity purposes with income coming from sale, carbon
gains, or official incentive. Some land may be suited or suitably located to earn direct
income from ecosystem services, for example the use of halophytes able to strip nutrients
from saline effluents prior to discharge to reduce eutrophication or contamination with
pathogens, effectively the ‘scrubbing’ action of a wetland able to tolerate salt. This service
by a knowledgeable salt land farmer may take place on other land depending on the
quantity and location of intended discharge.
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Saline water, also shown in this figure, deserves to be treated separately to degraded
land for the many situations where the quantity is very significant, and it can be addressed
as a water rather than a land investment. Although this may involve the use of degraded
land, the income to be derived from increasing the value of degraded water would form
the main activity.

8. Valuing Water

Degraded water comes in many forms and can be considered to have a negative value,
providing a clear income objective, increasing its value from negative to whatever other
use it may be applied [88]. Many of these forms of degradation are also accompanied by
salinity, which is a significant and under-appreciated factor in treatment or in utilizing
the resource. In the case of a plant-based solution, for example to strip nutrients from an
effluent stream, salinity seriously reduces the range of plants that can be used [89]. Globally,
some 80% of wastewater is discharged into rivers [10].

Addressing degraded water problems may occur in one of three directions or as a
combination: (i) activities to reduce or eliminate the damage in return for payment for the
service; (ii) activities to substitute for or ‘stretch’ fresh water by mixing the waters; and
(iii) activities towards some production that makes use of the water, and/or the nutrients it
contains and is rewarded in the normal way through the sale of products.

Examples of (i) include payments by a food processor or irrigator to compensate the
receiver of the water for taking up the nutrients before disposal of clean saline water to an
aquifer or other water body [40,65,89]; payments by an infrastructure owner for diverting
saline water from the foundations, or water reticulation, or irrigation system, or irrigated
land [79]; payments for phyto-remediation of waters through the removal of metal salts
(including radioactive), sodium, and others via serial bioconcentration; and payments for
phytoremediation of saline oil field wastes [90]. Examples of (ii) include the direct use of
degraded water in an income earning activity, such as land-based aquaculture and other
saltwater-based food production systems [91]; or amenity areas replanted with salt tolerant
species [92,93], with the income generated from a share of the saved high-value potable
water; and in irrigation of common crops through water blending [66]. Finally, activities
towards production that makes use of the water may include the use of nutrient-rich saline
water in the production of forage or animal feed meals and oil seeds [27], to grow energy
crops, biofuels, and pharmaceutical plants [27,94], sometimes as companion crops [57], and
generate electricity from the salinity and or temperature gradients in saline ponds [95].

Each of these uses can be considered novel, justifying an establishment investment,
even where they are practiced regularly now, such as stripping nutrients from effluents,
as the presence of salt(s) has potential impacts on the local environment, notably soils,
aquifers, and other receiving water bodies, and associated infrastructure, buildings, roads,
and reticulation systems. Assessing and guarding against such risks is a prerequisite to
investment and requires specialist input. In Figure 2. above, the land manager through the
representative board, would have the responsibility of liaising with regulatory authorities
on these aspects and contracting specialist services, in addition to its other duties of
brokering markets, finance, and specialist technologies.

Striking a value for water is very much location and context specific; at one extreme
the value of water is infinite since life is impossible without it, at the other extreme, for
example in floods or heavily pathogenic polluted situations, it is quite negative. In many
cultural settings it has a spiritual value that is difficult to even articulate, let alone ascribe
a monetary value to. Water is often only given a value related to its cost of handling and
storage but in some circumstances the value of infrastructure to be protected means this can
be quite high. These issues are discussed in a recent UNESCO Valuing Water Report [96].

The representative board or committee has the task of addressing this issue of negoti-
ating locally relevant value in collaboration with relevant officials, and then in brokering
sales and finance with interested parties (Figure 2). For this, they require a typology of
mapping tools able to economically describe the ecological situation at the appropriate
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scale to support the mobilisation of payments for environmental services (PES) in a useful
way [97]. Such tools are vital in capturing the linkages between investments in salinity
with relevant infrastructure, to mobilise the different types of finance available for linked
investments. This is increasingly possible in an era of heightened awareness of climate
impacts on water, which emphasizes the integrated nature of most investments in NRM
issues and the linked co-benefits [88].

9. Investment Sources

Investment in salinity mitigation has normally come through official channels and
are directed towards research or ground mitigation, augmented by farmer input with the
benefits being seen only in salinity terms, usually expressed in increased production. The
linkages between the co-benefits of this investment with other aspects of natural resources
management have seldom, until recently, been visible to the land manager or financiers.
More and more of these linkages are becoming evident so that investments directed towards
a particular outcome, for example biodiversity conservation, climate mitigation or water
quality is seen to generate others as co-benefits. In this new environment, it behoves
investors in NRM, as farmers or land managers, to quantify and articulate these linkages.
In this way, more funding can be directed towards integrated activities, which will have
a significant impact on the amount a land manager can apply to each situation and so
possibly reach a threshold for investment.

Investment sources that might be applied in these ways include (i) usual official
investments, but aggregated where possible to achieve co-benefits, (ii) institutions interested
in each specific benefit, and (iii) international and Ethical Investment Funds, mediated by a
regional or local collaborative body.

Official Australian investment in NRM, including for salinity, from all levels of Gov-
ernment, has a regional delivery focus suited to regional mediation, to try and achieve
co-benefits [86,98]. However, this has not yet sufficiently involved the private sector to
become a real market, although merchant interest in climate mitigation is increasing rapidly
in Australia, and internationally [99]. The major international sources include International
Finance Institutions (IFIs) including the World Bank, the Asian Development Bank, and
the International Fund for International Agricultural Development (IFAD), often through
dedicated funds such as the Green Development Fund, the Global Environmental Fund
(GEF) and the bilateral development agencies of OECD countries.

The challenge for supporters of the idea of creating a real market for more of the
benefits that accrue from successful rehabilitation of salt-affected soils and water is to
find a way to fund the process long enough to demonstrate how they can be captured, to
merchants, PES traders, and development institutions. For the initial step, an interested
philanthropist, or farsighted merchant, might be needed.
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