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Abstract: This study provides a detailed assessment of land cover (LC) changes on the water balance
components on data constrained Kikafu-Weruweru-Karanga (KWK) watershed, using the integrated
approaches of hydrologic modeling and partial least squares regression (PLSR). The soil and water
assessment tool (SWAT) model was validated and used to simulate hydrologic responses of water
balance components response to changes in LC in spatial and temporal scale. PLSR was further used
to assess the influence of individual LC classes on hydrologic components. PLSR results revealed
that expansion in cultivation land and built-up area are the main attributes in the changes in water
yield, surface runoff, evapotranspiration (ET), and groundwater flow. The study findings suggest
that improving the vegetation cover on the hillside and abandoned land area could help to reduce the
direct surface runoff in the KWK watershed, thus, reducing flooding recurring in the area, and that
with the ongoing expansion in agricultural land and built-up areas, there will be profound negative
impacts in the water balance of the watershed in the near future (2030). This study provides a forecast
of the future hydrological parameters in the study area based on changes in land cover if the current
land cover changes go unattended. This study provides useful information for the advancement of
our policies and practices essential for sustainable water management planning.

Keywords: land use change; SWAT model; water balance; PLSR; Mount Kilimanjaro

1. Introduction

Anthropic activities such as those leading to extensive land cover changes and climate
changes are among the main drivers for changes in hydrological processes of the water-
shed [1–3]. Anthropogenic modification of land use/cover is a topmost determinant of
environmental changes at spatial and temporal scales [4,5]. It is a principal determining
factor of global environmental changes with severe impacts on human livelihoods [6]. The
current rates are higher than ever recorded [7]. Many studies have also shown that land
use/cover changes influence the hydrology of watersheds [8–11]. Thus, evaluating the im-
pact of land cover (LC) and climate changes on water resource availability is an important
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challenge for the current hydrological science [12,13]. Further, there is a growing need for a
scientific community to balance human needs and environmental sustainability [14]. Thus,
understanding the environmental impacts of land use/cover changes is a fundamental
part of sustainable land planning and development [15].

In practice, land cover changes affect the surface water balance of an area, thus
impacting evapotranspiration, initial surface runoff, and groundwater flow [14,16]. Apart
from impacting water resources and hydrologic water balance, LC changes can directly
affect local communities, the biota, and possible water management plans [17,18]. The
spatial distribution patterns of land use/cover can substantially impact runoff and sediment
transport processes at different dimensions [19,20]. It has both local, regional and global
occurrence and is reported to continue in the future [14]. It potentially has large impacts
on water resources; thus, it is important to understand the possible effects of LC changes
on the runoff variability and possible measures [21].

Most places in East Africa have experienced a conversion of natural forests to settle-
ments, urban centers, farmlands, and grazing lands at varying dimensions [22,23]. This
conversion creates a need for a balance between the needs for a sprouting population, such
as food production, and the minimization of the negative environmental impacts on other
ecosystem services such as quality and quantity of water [24]. Although food production
requires a sustainable water supply, land use/cover changes resulting from agricultural
expansion affect water resources. These changes afflict food production in the long run [25].
Thus, it is essential to manage land use/cover changes at a catchment scale [26]. However,
quantifying its impacts is one of the challenging activities [27].

Mt. Kilimanjaro slopes are typical landscapes with the highest recorded land cover dy-
namics, and their consequences on water resources, food and energy production have been
reported in previous studies [28]. Changes in land cover in most of the areas surrounding
Mt. Kilimanjaro slopes have the potential to impact water resources [29–34]. These changes
trigger the need to understand land cover change trajectories and surface–groundwater
interaction among the critical requirements in water management practices in the area.
Surface–groundwater interaction affects water management and water rights changes,
nutrients loading from aquifers to streams, and in-stream flow requirements for aquatic
species at a watershed scale [35,36]. The knowledge regarding land use/cover changes
in relation to water balance components on the slopes of Mt. Kilimanjaro is of utmost
importance due to limited information with regard to groundwater flow [37].

Land degradation and land cover changes have contributed to the decline in surface
water resources around Mt. Kilimanjaro [34]. Human activities are reported as the main
contributor to the rapid land cover changes around the same area. The activities include
encroachment due to logging, agricultural expansion and settlements, which in turn have
created significant changes in the land cover [38]. Indeed, the increased anthropogenic
activities are mainly driven by the fast-growing population, which also strengthen the
pressure on the available water resources on a day to day basis [39]. Other drivers include
socioeconomic development and pressure on land for expansion in agriculture [40].

Some of the proposed strategies to curb the expansion of agriculture due to the demand
for food to suffice the expanding population on the slopes of Mt. Kilimanjaro include the
improvement of the land tenure security and the introduction of modern land and water
conservation measures [41]. These strategies are aimed at increasing per capital production
and discourage the opening up of more land for agriculture [34]. Shrinking in the forest area
along the mountain landscapes has also been reported in several studies [42,43]. However,
the quantitative estimates of water losses due to deforestation in the Pangani basin are
scanty or missing [44]. Hence, it is essential to understand the effect of land management
practices at the basin and sub-basins scale; these practices increase the impact of hydrologic
variability on the society and ecosystem [21].

Mount Kilimanjaro is hydrologically important [42,45], as a water tower for the East
African region [46]. Local populace on the mountain slopes of North-eastern Tanzania
and South-eastern Kenya predominately depends on freshwater supplies for domestic, hy-
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dropower production, industrial, and irrigation [42,47]. Further, the mountain harbors the
most effective water source in the fog interception zone along the thick forest reserve [45].
Therefore, impacting the water balance of Mt. Kilimanjaro will affect the attainment of the
local, regional and global sustainable development milestones.

KWK watershed is one of the mountainous watersheds along the southern slopes of
Mt. Kilimanjaro and the northern part of the Pangani river basin. Being located on the
mountain slopes with greater human activities, KWK experiences tremendous changes in
its land cover, thus necessitating quantifying the impacts of land cover changes on the water
balance of the watershed for sustainable water resources management. However, despite
the growing need, simulation of hydrological processes using water balance components,
such as surface runoff in mountainous areas with irregular terrain and complex hydrologic
processes, is challenging [48]. Estimating the parameters for the hydrological simulation
model (SWAT) is hampered by the variation of temperature and precipitation with elevation
and spatial variability due to complex terrain [49].

A modeling approach is typically the best method to assess the impacts of land
use/cover change on the water balance. Models can be used to evaluate the historical and
future implications of land use/cover changes on the hydrology of a catchment [50]. This
study used a soil and water assessment tool (SWAT) for assessing the impacts of land cover
changes on the water balance components of the KWK watershed on the southern slopes of
Mt. Kilimanjaro. SWAT has been tested and used to solve complex watershed management
problems in many regions all over the world [21,47,51–53]. Therefore, the objectives of this
paper are three-fold viz: to set up, parameterize and calibrate the SWAT model in terms of
streamflow. Further, to investigate the impact of land cover changes on the water balance
in historical (1993–2018) and the near future (2018–2030), and to establish the impact of
the individual land cover type on the water balance using PLSR modeling. This study
provides a comprehensive analysis of the historical and future land cover dynamics and
their impacts on the hydrological processes. Hence, the findings of this study are useful
for the advancement of our policies, practices and management practices aimed to attain
environmental and water resources sustainability. Apart from analyzing the historical
impacts of land cover changes on hydrological processes, this study also forecasts the
future hydrological parameters in the study area based on changes in land cover if the
current land cover changes go unattended. In a broader perspective, the results from this
study may help realization of the United Nations sustainable development goals, such as
ending poverty (Goal 1), food security (Goal 2), availability and sustainable management
of water and sanitation for all (Goal 6), biodiversity conservation (Goal 15) and energy for
all (Goal 7) [54].

2. Materials and Methods
2.1. The Study Area

This study was done at the Kikafu, Weruweru, and Karanga (KWK) watershed,
which spans from the thick mountain forest on the southern slopes of Mount Kilimanjaro
(Figure 1a). The study area, rainfall pattern (Figure 1b), population and anthropic activities
were detailed in Said, Komakech [28] and Said, Hyandye [41]. It is worth mentioning that
the largest water extractor is agriculture, being dominated by small to large scale irrigation
along the mountain slopes. The primary soil types in the agricultural area are chromic
luvisols, Eutic cambisols, haplic nitisols, and humic nitisols (Figure 2b). More than 70%
of the watershed falls under 0–8% slope class (Figure 2a) dominated by maize and bean
farms; runoff velocity is high in the lowlands due to a comparatively high annual rainfall
in the highlands. Therefore, runoff is the most crucial management factor in the watershed.
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2.2. The General Approach of the Study

This study employed both the historical and the near future (2030) land cover change
analysis approach to analyze and simulate water balance changes in the KWK watershed.
Several studies suggest that there might be potential impacts of land cover changes on
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the hydrology of Mt. Kilimanjaro; nevertheless, there is limited knowledge on this. Thus,
with a high population rate in the watershed, it was worth analyzing these impacts of
land cover changes on hydrological processes. This study is an integrative work done in a
geographic information system (GIS) environment and statistical analysis at a watershed
scale. Field surveys and interviews were also done to gain community insight on water
demand, withdrawal and crop management. Where necessary, precise locations of some
of the land features such as forests, water bodies, forests and agriculture fields were
determined using a hand-held Garmin Global Positioning System (GPS) for further analysis.
ArcSWAT embedded in ArcGIS version 10.5 was used to set up and parameterize the KWK
SWAT model. The calibration of the KWK SWAT model was done in SWAT Calibration
and Uncertainty Procedures (SWAT CUP) using the river flow gauged data. The land
covers were varied in SWAT to establish the relationship between land cover changes and
hydrological response in the studied watershed. Thereafter, PLSR was done to determine
the relationship between individual land use/cover changes and hydrological response
using the XLSTAT add-in tool in Microsoft Excel.

2.3. Soil and Water Assessment Tool (SWAT)

Soil and water assessment tool (SWAT) is a popular physical-based hydrological model
used to simulate hydrologic processes within the watershed [55]. Since its development by
the United States Department of Agriculture (USDA), SWAT has been used to predict the
impact of management practices on water, sediments, and agricultural chemical yields in
large data-scarce basins [56]. SWAT has been used to assess the impacts of anthropogenic
activities that degenerate the natural river basin systems and thus impacting the water
balance of a watershed [57,58]. In recent years, SWAT has been widely used to simulate
watershed hydrological processes in many countries [21,52,53,59,60].

SWAT operates on a daily time step with optional monthly or annual output. The
model divides a watershed into a unique combination of soil and vegetation types which
provides the basic unit for computation of flow accumulation. SWAT simulates the hydro-
logical cycle using the water balance equation (Equation (1))

SWt = SW0 +
t

∑
i=1

(Ri − Qi − ETi − Gi − Bi) (1)

where SWt (mm) is the final soil water content, SW0 is the initial soil water content on day
i, t is the time, Ri is the precipitation amount on day i. Qi (mm) is the amount of surface
runoff on day i, ETi (mm) is the evapotranspiration (ET) amount on day i. Gi (mm) is
the amount of water entering the vadose zone from the soil profile on day i, and Bi is the
amount of return flow on day i.

To be able to tell whether the changes were attributed to climate or land use/cover
changes, only land use/cover was varied. The land phase of the hydrological cycle is
simulated in the soil and water assessment tool (SWAT) based on the water balance
equation [61]. SWAT model simulates the surface runoff volumes and peak runoff rates
using the Soil Conservation Service (SCS) curve number (CN) [62] for each of the hydrologic
response unit (HRU) using daily rainfall data. The HRU analysis in SWAT includes the
delineation of HRUs by overlaying the spatial map of slope classes, land use, and soil
data. Thus, changes in land use will likely generate HRUs of different pattern; as a result,
different hydrological parameters will be simulated.

2.4. ArcSWAT Model Input Data

Watershed data, namely soil, land use, slope, and weather data, are required to run
the SWAT model. These data are used to define the hydrologic response units (HRU) of the
watershed. The detailed information for all data used to prepare the SWAT model for the
KWK watershed is summarized in Table 1.
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Table 1. Description of data types and sources.

Data Type Description Resolution Source

Topography map Digital elevation model 30 × 30 m ALASKA satellite facility
Land use Land use maps 30 × 30 m Classified image

Soil map Soil types https://www.2w2e.com/home/GlobalSoil
(accessed on 17 May 2020)

Weather data Daily precipitation 6 stations Tanzania Meteorological Agency (TMA)
Weather data Max and min air temp 6 stations Global weather data for SWAT
Weather data Relative humidity 6 stations Global weather data for SWAT
Weather data Solar radiation 6 stations Global weather data for SWAT
Hydrometric Daily streamflow 4 stations Pangani Basin Water Office (PBWO)

The digital elevation model was derived from the 30 m resolution topography data
obtained from the Shuttle Radar Topography Mission (SRTM). The digital elevation model
(DEM) was used to delineate the watershed, generate a stream network, and provide
topographical parameters, such as overland slope and slope length for each watershed.
Burning of the digitized stream network from the Google Earth interface was opted to
eliminate errors due to DEM elevation generalization. In this option, the stream network
was overlaid onto DEM to force alignment of the stream to follow the specific path. From
the same elevation data, the slope map (Figure 2a) was generated using the spatial analysis
tool. The slope map was reclassified into five categories, i.e., <0–8%, 8–15%, 15–25%,
25–45% and >45%.

Soil data is essential for hydrological simulations with SWAT. Soil physical and chem-
ical properties (texture, organic carbon, bulk density, soil available water content, hy-
draulic conductivity and bulk density) in soil layers help as determining factors for surface
runoff [5]. Soil data were obtained from the Food and Agriculture Organization (FAO)
Harmonized global soils database at http://www.waterbase.org/download_data.html
(accessed on 17 May 2020). The watershed boundary was used to extract the soil data from
the FAO soil database of the African soils slice. The soil map comprised six categories
(Figure 2b). The attributes of these soils were updated using a “user soil” table from the
MapWindow SWAT12 database due to the fact that the “user soil” table of ArcSWAT12 soil
database contains USA soils only.

The land cover maps for the years 1993, 2006, and 2018 (Figure 3) were classified from
time-series Landsat satellite images. Further, the near future (2030) land cover map was
simulated using the Markov Chain and Cellular Automata (CA) models embedded in
Idrisi Selva Software. The details of the land cover classification and CA-Markov validation
are not part of the current work. However, it is worth mentioning that the classification
accuracy assessment values satisfy the minimum accuracy threshold of 85% needed for
efficient and authentic LC change analysis and modeling [63,64]. The assessment results
are regarded as acceptable because Kappa values are greater than 80%, as Jensen (2007)
stated. This procedure is detailed in Said, Hyandye [41]. These maps were independently
used to simulate the hydrological impacts of land cover changes at the KWK watershed.

Precipitation data was obtained from the four ground-based weather stations at
Kilimanjaro International airport (KIA), Lyamungu, Moshi Airport, and Kibosho Mission
(Figure 1b). These were combined with the Climate Forecast System Reanalysis (CFSR)
global weather data for SWAT. KIA weather station is slightly out of the watershed, but
it contains good quality data, and it is located in influential area data that necessitated
its inclusion in this study. The ground-based gauging stations data were provided by the
Tanzania Meteorological Agency, whereas the CFSR weather data were freely accessed
from http://globalweather.tamu.edu/ accessed on 18 October 2019. The use of the CFSR
data was due to the unavailability of some parameters for the three stations within the
watershed (wind speed, solar radiation, and relative humidity).

https://www.2w2e.com/home/GlobalSoil
http://www.waterbase.org/download_data.html
http://globalweather.tamu.edu/
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The CFSR of the National Centers for Environmental Prediction (NCEP) provides
ready to use weather data with a good resolution between 1979 and 2014 [65]. The CFSR
data often captures the rainfall pattern very well; however, it often overestimates the
gauged rainfall [66]. Hence, Kilimanjaro and Lyamungo stations were used to perform
bias correction of the CFSR precipitation data. Additionally, the two more stations in
the highland areas (not shown in Figure 1) were used during bias correction of CFSR
precipitation data; the highest station was located at an altitude of around 2200 m a.m.s.l.
The bias of the CFSR data was corrected by a linear bias correction approach which is well
described by Worqlul, Yen [67]. This approach reduces the volume difference between
CFSR and gauged rainfall data while keeping the pattern. The two datasets (uncorrected
CFSR and gauged rainfall data) involved in the linear bias correction process covered the
same time window (1979–2014). The annual volume difference between the observed and
bias-corrected data was minimized to zero.

The river discharge data for model calibration and validation periods with varying
time length ranging from 1979 to 2018 for Kikafu, Weruweru and Karanga rivers at their
gauging station were obtained from the Pangani Basin Water Organization. River discharge
data cleaning revealed two anomalies; the data discontinuity (gaps) which might be due to
inadequate gauge reading and or records keeping and abnormally high discharge values.
During data cleaning, abnormally high discharge values were removed, and gaps were
filled using simple interpolation and linear regression methods [68]. The hydrological
years with relatively consistent data series were considered for the model, whereas those
with the most significant outliers were eliminated from further application in hydrological
modeling. Generally, the gauge stations are located in perennial outlets with discharge
throughout the year, the peak discharge follows the rain season. The discharge exhibits
small increase during the short rains between October and December (OND); however, this
has not been consistent due to variability in this season. The March–April–May (MAM)
rains are the ones producing highest discharge with the highest peak in May. However,
calibration was only done at one station in the outlet due to data quality issues.

2.5. Model Set-Up and Parameterization

A total of 33 sub-basins and 532 hydrologic response units (HRU) were delineated
during the SWAT model set-up and HRU definition processes. The HRU are the areas
in the watershed with a combination of unique soil, slope and land cover. This unique
combination helps to account for differences in evapotranspiration and other hydrological
conditions with different land covers, soils, and slopes [69]. Having achieved the basic
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operational KWK SWAT model, the model was further edited to include management
activities such as crops management schedule season in the watershed. Since it was not
possible to estimate the rate of fertilizer applications for various crops as well as quantifying
the amount of water used for irrigation, the KWK SWAT model adopted auto fertilization
and auto irrigation for the crops.

The KWK SWAT model parameters, such as the potential evapotranspiration, were
estimated using the Hargreaves method, while the curve number method was used for the
runoff estimation. Other parameters were manually edited before carrying out automatic
parameters estimation using the SWAT model calibration and uncertainty procedure (SWAT-
CUP) [70]. The manual parameter adjustments were based on the expert knowledge of the
watershed physical and hydrogeological characteristics such as river channel width, leaf
area index, and soil types.

2.6. Automatic Calibration and Validation of the SWAT Model

The SWAT model calibration and uncertainty procedure (SWAT-CUP) was used to cal-
ibrate and validate the KWK SWAT model automatically. Model calibration and sensitivity
analysis were done at the watershed outlet due to data discontinuity and abnormally high
discharge values as compared to precipitation. Simulations that were set up using the 1993
LULC map were used to calibrate monthly streamflow from 1987 to 1993. After calibration,
the simulations that were set up using the same LULC map was used to validate the
monthly streamflow from 1994 to 2000. Selection of the calibration and validation time
i.e., between 1987 and 2000 was based on the quality of the available discharge data, and
good data continuity. Sensitivity analysis was carried out in SWAT-CUP, whereby 22 flow
parameters were used, and the model was run for 1000 iterations. The significance of the
sensitivity of each parameter was determined using t-stat and p-value [71]. The higher
the absolute t-stat values among the parameters and the smaller p-values, the higher the
sensitivity. Usually, p-values close to 0 and 0.05 are acceptable [72]. The t-stat is used to
identify the relative significance of the parameter, whereas the p-value is used to ascertain
the sensitivity significance [71].

Generally, the calibration process was based on varying the hydrological parameters
iteratively. The agreement between the simulated and observed streamflow was used as
a decision tool for the final parameter variation. The model performance was evaluated
comparatively using the streamflow hydrograph for simulated and observed streamflow
for both calibration and validation periods. Statistical evaluation of the model was done
using per cent bias (PBIAS), coefficient of determination (R2), the Nash and Sutcliffe
simulation efficiency (NS). R2 is a measure of the extent of uniformity between observed
and simulated data; R2 ranges from 0 to 1, with higher values indicating high suitability.
However, values higher than 0.5 are considered acceptable for simulation [73]. NS show
the extent that observed and simulated data fit each other (Nash and Sutcliffe, 1970), where
NSE = 1 is the best value. Per cent bias (PBIAS) measures the average tendency of the
simulated data to be larger or smaller than their observed values for a given quantity
over the calibration or validation period; the value becomes the best as it comes to zero.
The RMSE-observations standard deviation ratio (RSR) standardizes RMSE using the
observations standard deviation; generally, the best simulation performance is considered
to have relatively lower RSR and hence lower RMSE. The details of model evaluation can
be found in Moriasi, G. Arnold [74].

The calibrated flow parameters were used to check the model capacity to simulate
measured streamflow results. The streamflow validation of the model was done using
a new streamflow dataset without any adjustment in the calibrated flow parameters.
Evaluation of the model performance was done using PBIAS, R2, and ENS, respectively.

The calibrated and validated parameters from SWAT-CUP were returned into the
KWK SWAT model. The new parameters from SWAT-CUP were used to either replace
or modify the existing values in the SWAT model. This process was accomplished using
the Manual Calibration Helper function in the ArcSWAT environment. Updating the
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SWAT model using the calibrated and validated parameters from SWAT-CUP meant that
the KWK SWAT model was ready for use in hydrological processes simulation in the
KWK watershed.

2.7. Partial Least Squares Regression Analysis

Partial least squares regression (PLSR) is a robust multivariate regression method,
especially when there are collinear predictors, high correlated predictors, numerous predic-
tors equal to or higher than observations and many independent variables [75]. Analysis
of land cover change impacts on water balance components is widely performed using
multivariate regression analyses [5,21,74,75]. PLSR is an extension of a multiple linear
regression model. In the simplest form, a linear model specifies the relationship between
a dependent variable y, and a set of predictor variables x, as shown in Equation (2). The
model parameter is estimated as a slope of a simple bivariate regression between a matrix
column or row as the Y-variable and another parameter vector as the X-variable; this is
done for each variable [76].

y = k0 + k1x1 + k2x2 + . . . + knxn (2)

where k0 is the regression coefficient for the intercept and ki values are the regression
coefficients (for variables 1 to n) computed from the land cover change data.

The predictive quality of the model in this study was improved by running series
of PLSR models, in each run; the Q2 cumulated (Q2

cum) was used to eliminate variables
with the least influence until the largest Q2

cum was attained. Generally, Q2
cum above 0.5 is

considered to be of good predictive power [74]. The cross-validated root mean squared
error (RMSECV) was used to avoid skewness by the data points, especially when there are
outliers. The model’s predictive power was measured by using the global goodness of fit
(R2) and the cross-validated model quality index (R2

cross). R2 is a fraction of variance in
the dependent variable, which can be predicted by the model; whereas, R2

cross measures
prediction goodness. Generally, the importance of predictors (for all variables) is measured
by the variable importance for the projection (VIP), where the larger the values, the higher
the predictor relevance.

In determining the land use types that interact with hydrological components more
than the other, the regression coefficients (RCs) and the variable importance of the pro-
jection (VIP) were used. VIP values can be used to show a broader expression of the
relative importance of predictors [77]. Based on the world’s criteria, VIPs are categorized
to indicate the importance of a particular predictor in influencing the dependent variables;
VIP values > 1 and/or VIP > 0.8 show that the predictor variable is significantly important,
i.e., those predictors with large VIP values can best explain the dependent variable [78,79],
the values >0.8 are most pertinent, whereas the values <0.5 show insignificance in ex-
plaining the variable [74,78,80]. The RCs show the direction and strength of the impact of
each independent variable. Generally, a small RC and large VIP shoes the importance of
the variable in prediction in that direction, whereas the small RC and small VIP indicate
insignificance of the particular variable; thus, it can be omitted from the model. Moreover,
PLSR weight (w) provides more precise and reasonable insight into the sign (+ or −) of
the weight of the corresponding coefficients in the model. Usually, the squares of w values
greater than 0.2 show that the PLSR component is mainly weighted on the corresponding
variables. In addition, the w value shows the direction of influence that the LC class has
on the corresponding water balance components. i.e., the negative sign means inversely
related, whereas a positive sign means it is directly proportional to most of the selected
hydrologic components.

PLSR method associates principal component analysis (PCA) and multiple linear
regression features [81]. The method is suitable when the predictors show multicollinear-
ity [82,83]. Generally, land use data exhibit collinearity because an increase in the percent-
age/area of one type will automatically decrease the percentage/area of one or more of
the other land use type [84]. Thus, it is appropriate in this study because it eliminates
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co-dependence among the variables and provides a more unbiased view of the contribution
of the changes in water balance components at the watershed scale.

In this study, PLSR modeling was used to determine the association between the
simulated hydrological components and land use/cover classes. The land use types are
the predictors, and the annual hydrological components are the response feature. These
analyses were done using the statistical package for social science (SPSS) version 21 and
the XLSTAT add-in tool [50].

2.8. Simulation of Impacts of LU Change Scenarios on Hydrological Processes

The calibrated and validated SWAT model was used to simulate the impacts of LU
changes on the hydrological processes of the watershed based on historical LU data for the
years 1993, 2006 and 2018. The future impacts of the LC change scenario were assessed
using the LU map for the year 2030. Both temporal and spatial variation of land cover
change scenarios on various watershed water balance components were considered. In this
study, the annual average values of the selected hydrological components were used to
assess the impact of land cover changes on the hydrology of KWK watershed. The selected
hydrologic components were surface runoff (SurfQ), lateral flow (LatQ), groundwater flow
(GWQ), actual evapotranspiration (ET), and water yield (WatQ).

The methods and steps applied in this study to assess LUC change impacts on hy-
drological processes in KWK watershed are summarized in Figure 4. The figure can be
split into three major blogs: the SWAT model set up and parameterization (left-hand side),
SWAT model calibration and validation, and fine-tuning of the model (middle blog). The
last blog (right-hand side) presents the PLSR modeling and assessment of impacts of land
use and cover changes on hydrological processes.
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3. Results
3.1. Sensitivity Analysis

The sensitivity analysis showed that there are nine most sensitive parameters of the
KWK SWAT model that minor changes in their values were found to influence river flow,
shown in Figure 5. These parameters were those with p-value ≤ 0.05. The parameters
include a_CN2.mgt, v_ALPHA_BF.gw, a_HRU_SLP.hru, v_GWQMN.gw, a_CH_K2.rte,
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a_SOL_AWC().sol, a_SLSUBBSN.hru, v_GW_REVAP.gw, a_CANMX.hru and SOL_K().sol.
The t-statistical values of the parameters are used to rank the parameters in the order
of magnitude of their influence on the streamflow. According to Abbaspour [72], the
higher the absolute t-test values, and low p-values, the more sensitive the parameter.
The information regarding parameters sensitivity analysis is always helpful in making
modelers’ work easy as it highlights which parameters to fine-tune during calibration of a
hydrological model.
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3.2. Model Parameters, Calibration and Validation

The calibration and validation curves plotted together with mean monthly rainfall
are shown in Figure 6. The rainfall and monthly river discharge in Figure 6 show that the
model captured well hydrologic processes within the watershed. Generally, the simulation
reflected the observed flow, which shows that the model can efficiently simulate the
hydrological impacts of land use changes over the 1993–2030 periods.
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Figure 6 shows that the simulated flow reflected the observed flow. However, it is
worth stating that the model did not mimic very well both low and high flows as indicated
in Figure 6. There is a high level of baseflow throughout the year due to springs along
the watershed.

The model calibration parameters that were used for calibration and their default
range are summarized in Table 2.

Table 2. Parameters sensitive to streamflow, their default range, fitted value during calibration and final values used.

Parameter Description SUFI2 Fitted Value Default Range The Final Value in
SWAT Model

r_SURLAG.bsn Surface runoff lag time (days) 0.02 0.05–24 0.02

v_ESCO.bsn Soil evaporation compensation factor 0.65 0.01–1 0.65

v_GWQMN.gw
Threshold depth of water in the

shallow aquifer for return flow to
occur (mm H2O)

382.88 0–5000 382.88

v_GW_REVAP.gw Groundwater “revap” coefficient 0.27 0.02–0.2 0.05

r_REVAPMN.gw
Threshold depth of water in the

shallow aquifer for “revap” to occur
(mm H2O)

2.01 0–1000 750

v_ALPHA_BF.gw Baseflow alpha factor (days) 0.11 0–1 0.13

v_RCHRG_DP.gw Deep aquifer percolation fraction 0.22 0–1 0.63

v_GW_DELAY.gw Groundwater delay (days) 579.52 0–500 18.25

v_CH_N1.sub Manning’s ‘n’ value for the
tributary channels 0.69 0.01–30 0.69

v_EPCO.hru Plant uptake compensation factor 0.83 0.01–1 0.83

a_OV_N.hru Manning’s “n” value for
overland flow 0.10 0.01–30 0.10

a_CANMX.hru Maximum canopy storage (mm H2O) 0.077 0–100 10.78

a_SLSUBBSN.hru Average slope length (m) 75.11 10–150 75.11

a_HRU_SLP.hru Average slope steepness (m/m) −0.38 0.3–0.6 0.47

a_SOL_AW().sol Available water capacity of the
soil layer −0.02 0–1 0.12

a_SOL_K().sol Saturated soil hydraulic
conductivity (mm/h) 515.59 0–2000 515.59

a_CH_k2.rte Effective hydraulic conductivity in
main channel alluvium (mm/h) 192.66 0–500 85.56

a_CN2.mgt Initial SCS runoff curve number for
moisture condition II 6.35 35–98 92.13

a_CH_W2.rte Average width of main channel at top
of bank (m) −2.97 0–1000 54.21

v_CH_K2.rte Effective hydraulic conductivity in
main channel alluvium (mm/h) 463.10 −0.01–500 467.39

v_LAI_INIT.mgt Initial leaf area index 5.21 0–8 5.21

v_BIO_INIT.mgt Initial dry weight biomass (kg/ha) 661.20 0–1000 661.20

v_PHU_PLT.mgt
Total number of heat units or growing

degree days needed to bring plant
to maturity

2228 0–3500 2228

a_ means absolute; given value is added to the existing parameter value during calibration; v_ means replace; the existing parameter value
is to be replaced by a given value during calibration and r-refers the default parameter values are multiplied by a factor of (1 + r).
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Parameter values, i.e., NSE, PBIAS, and R2 were, respectively, estimated as 0.61, 0.59,
and 0.68 in calibration, and 0.66, 0.54, and 0.67 during validation as summarized in Table 3.

Table 3. Model performance statistics for the calibration and validation periods.

Period Average Monthly Flow (m3/s) Evaluated Statistics

Observed Simulated NSE r-Factor PBIAS R2

January 1987–December 1993 19.16 17.23 0.61 0.56 10.1 0.68
January 1994–December 2000 14.06 15.06 0.66 0.69 3.3 0.67

3.3. The Impact of Land Cover Changes on the Hydrology of the KWK Watershed

The influence of land cover changes on the hydrology of a watershed is indicated
using changes in vegetation that signify changes in CN in different decades. Decrease
in forest area and changes in other vegetation increases changes in CN of a watershed;
reports show that increases in built-up area and increase in population decrease vegetation
cover [85]. Continuous demand for space and other natural resources can influence people
to shift and settle in forested areas, which will result in forest degradation and increased
surface runoff in these areas.

Generally, the results of the impact of land cover changes on the hydrology of the
KWK watershed showed that the LC fluctuations in the catchment for the past 25 years
(1993–2018) impacted the annual water balance component values of a watershed (Table 4).
The results show higher annual variation in GWQ as compared to LatQ and WatQ. The
predicted LC changes of 2030 will result in lower values for almost all selected hydrological
parameters than in previous years (1993–2018). It is expected that expansion in agricul-
tural land and built-up areas reduces grassland and shrubland and increases SurfQ and
streamflow, and consequently, reduces GWQ [86]. Furthermore, the correlation among
hydrological components was also studied (Table 4). The results show a relatively high
positive correlation among the hydrological components at varying degrees. Ideally, the
results suggest that changes in one hydrological component result in a change in the value
of other components.

Table 4. Area land use change, annual basin values (mm) for different consecutive years in the study area (note: glacier and
rocky surface ice were excluded in this analysis).

Selected Areal LC Classes (%) Annual Basin Values (mm)

LU BULT AGRL WATR FORR BARR GRSL WTL SHRL SurfQ LatQ GWQ ET WatQ

1993 4.38 11.63 1.44 33.08 11.17 23.18 2.93 5.89 295.39 38.86 168.93 502.0 513.00
2006 6.47 17.68 1.54 31.01 9.23 19.97 2.28 5.03 275.69 38.97 176.28 492.0 514.17
2018 10.34 23.29 1.54 31.13 4.58 16.96 1.44 4.20 345.23 36.3 205.91 471.2 672.29
2030 14.93 30.54 2.00 30.54 1.46 9.24 1.06 4.44 292.94 38.67 174.33 498.6 516.06

BULT—built-up area; AGRL—agriculture land; WATR—water; FORR—forest; BARR—barren land; GRSL—grassland; WTL—wetland;
SHRL—shrubland; SurfQ—surface runoff; LatQ—lateral flow; GWQ—groundwater flow; ET—evapotranspiration; WatQ—water yield.

The exponential increase in annual values for the selected hydrologic parameters is
observed between 1993 and 2018. SurfQ increased by 16.87%, whereas GWQ also increased
by about 21% between 1993 and 2018. Likewise, WatQ has also grown exponentially from
1993 to 2018 and is expected to decrease in the near future (2030). Values show a decrease of
about 0.2% between 1993 and 2006, and a sharp increase of approximately 31.3% from the
years 2006–2018; however, it is expected to decrease by 23.2% by 2030. However, despite
this increase, LatQ was observed to exhibit an almost negligible rise between 1993 and
2006, while it shows a slight increase between 2018 and 2030, meaning that the impact of
LU changes on lateral flow is minimal.
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3.4. The PLSR Model Explained Variations of Individual Land Cover Changes on Water Balance

The partial least squares regression (PLSR) model of the hydrological components
in the KWK watershed presented in Table 5 indicates a strong correlation between land
cover changes and the variations in water balance components. That is, the correlations
between the explanatory (X) variable (Land use) and dependent (Y) variables (Water
balance components), with the components all close to 1, correspond to the total explained
variations in Y and Q2 cum [21]. Variation in the hydrological components (Cum explained
variation in Y (%)) were 94.1%, 96.8%, and 98.6% for component numbers 1, 2 and 3,
respectively. These high correlation values indicate that the PLSR model captured well
both the X and the Y variables.

Table 5. Results of the partial least squares regression (PLSR) model of the hydrological components in the KWK watershed.

Response
Variable Y

Variation in
Response Q2 Comp Explained

Variation in Y (%)
Cum Explained

Variation in Y (%)
Root Mean

PRESS Q2 Cum

Hydrological
components (ET,

WatQ, SurfQ,
GWQ, LatQ)

0.951 0.901

1 94.1 94.1 0.272 0.9953

2 2.7 96.8 0.432 0.9926

3 1.8 98.6 0.561 0.9937

4 1.4 100 0.624 0.9481

3.5. Hydrological Impacts of Individual Land Cover Changes on the Selected Water
Balance Components

The areal changes under built-up, agriculture, as well as water positively attributed
to the changes in evapotranspiration (ET), surface runoff (surfQ), water yield (WatQ),
groundwater flow (GWQ) as well as lateral flow (LatQ) from PLSR are presented in Table 6.
The correlation coefficient values for the built-up area for all water balance components
ranged from 0.89 to 0.94. Specifically, for agricultural land, the correlation coefficient values
were 0.79 (ET), 0.86 (SurfQ), 0.85 (WatQ), 0.94 (GWQ), and 0.86 (LatQ). Furthermore, water
surface coverage was slightly positively correlated to SurfQ (0.54), WatQ (0.54), GWQ (0.69)
as well as LatQ (0.54). In contrast, the change in SurfQ was negatively attributed to changes
in the areas under barren land (0.96), grassland (0.86), wetland (0.90) and shrubland (0.86).
Water yield, on the other hand, is negatively attributed to the areal changes in barren land
(0.96), grassland (0.86), wetland (0.89) and shrubland (0.86). GWQ is slightly negatively
attributed to changes in the forest area (0.62), but highly attributed to changes in the areas
of barren land (0.99), grassland (0.94), wetland (0.97), and shrubland (0.94). Similarly,
the change in latQ was negatively attributed to changes in the areas of grassland (0.86),
wetland (0.89), shrubland (0.86) as well as barren land (0.96). On the other hand, ET was
negatively attributed to changes in the areas under barren land (0.92), grassland (0.79),
wetland (0.84), and shrubland (0.79).

Although glacier ice is one of the land use types, it is worth mentioning that the
contribution of the snow was not taken into account as a contributor to the annual runoff.
The motive behind this decision is that previous studies suggest the absence of isotopic
signatures in springs and river discharges [37]. Further, the rocky surface was also omitted
during VIP tests.

Water balance is and has always been a crucial aspect to grasp in order to handle water
management problems effectively [21]. In this study, changes in the area under natural
vegetation such as forest, shrubland, wetland, and grassland were negatively correlated
with SurfQ at varying degrees (Table 7). In Table 4, these land covers were found to be in
the decreasing trend. These correlation results in Table 6 would mean that improving the
vegetation cover on the hillside and abandoned land area could help to reduce the direct
surface runoff in the KWK watershed. As a result, it will help to reduce flooding recurring
in the area and affecting most of the people in the lowlands.
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Table 6. Correlation matrix for the LC variables and selected hydrologic components.

Variables BUILT AGRL WATR FORR BARR GRASL WETL SHR ET SurfQ WatQ GWQ LatQ

BUILT 1.00
AGRL 0.98 1.00
WATR 0.80 0.89 1.00
FORR −0.74 −0.85 −0.99 1.00
BARR −0.99 −0.97 −0.76 0.69 1.00

GRASL −0.98 −1.00 −0.89 0.85 0.97 1.00
WETL −0.99 −0.99 −0.85 0.80 0.99 0.99 1.00
SHR −0.98 −0.99 −0.89 0.85 0.97 1.00 0.99 1.00
ET 0.89 0.79 0.44 −0.35 −0.92 −0.79 −0.84 −0.79 1.00

SurQ 0.94 0.86 0.54 −0.46 −0.96 −0.86 −0.90 −0.86 0.99 1.00
WtrQ 0.94 0.85 0.54 −0.45 −0.96 −0.86 −0.89 −0.86 0.99 1.00 1.00
GWQ 0.99 0.94 0.69 −0.62 −0.99 −0.94 −0.97 −0.94 0.95 0.98 0.98 1.00
LatQ 0.94 0.86 0.54 −0.46 −0.96 −0.86 −0.89 −0.86 0.99 1.00 1.00 0.98 1.00

Significant value at p = 0.05; SurfQ—surface runoff; LatQ—lateral flow; GWQ—groundwater flow; ET—evapotranspiration; WtrQ—total
water yield.

Table 7. Variable importance for the projection (VIP) values and PLSR weights for independent
variables in the KWK watershed.

Variable VIP w*1 w*2 w*3

BUILT 1.28 0.316 −0.878 0.444
AGRL 1.57 0.445 −0.597 −0.449
WATR 0.69 −0.374 −0.742 −0.491
FORR 0.89 −0.465 0.371 0.913
BARR 1.13 −0.325 −0.410 −0.337
GRAL 1.10 −0.386 0.324 0.493
WETL 0.65 −0.206 −0.236 −0.3530
SHRL 1.11 −0.228 −0.264 −0.4818

BULT—built-up area; AGRL—agriculture land; WATR—water; FORR—forest; BARR—barren land;
GRSL—grassland; WTL—wetland; SHRL—shrubland.

4. Discussion
4.1. Sensitivity Analysis

Previous hydrological studies by Ndomba, Mtalo [87] and Kishiwa, Nobert [47]
have also reported on the most sensitive flow parameters in Pangani. The parameters
SURLAG, GWQMN, RCHRG_DP, SLOPE, soil depth (SOL_Z), ESCO, SOL_AWC, SOL_K,
and ALPHA_BF, CH_N, CH_K2, SLSUBBSN, GW_DELAY, SOL_ALB, and GW_REVAP,
among these previously reported parameters were also crucial in this study, although with
different levels of sensitivity. Contrary to previous studies, the maximum canopy storage
(CANMX.hru) was not reported to influence the model output.

4.2. Model Parameters, Calibration and Validation

The high level of baseflow could have resulted from the incapability of the model to
capture baseflows. This observation was also reported by Kishiwa (2018). Additionally, the
mountainous nature of the study watershed may be attributed to this phenomenon. The
parameter values for NSE, PBIAS, and R2 in Table 3 are 0.61, 0.59, and 0.68, respectively,
for calibration; 0.66, 0.54, and 0.67, respectively, during validation showed satisfactory
results. The NSE value > 0.5, PBIAS < ±10 < PBIAS < ±15, and R2 ≥ 0.6 [73,88] indicating
that the model is acceptable for the hydrological simulations. In this regard, the cali-
brated SWAT model used in this study could efficiently and reliably be used in simulating
the hydrological impacts of land use changes in the KWK watershed for the 1993–2030
time step.
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4.3. The Impact of Land Cover Changes on the Hydrology of the KWK Watershed

The results show that land cover has changed throughout the study period within the
catchment; previous studies also show that land use has changed on the entire slopes of Mt.
Kilimanjaro [29,32,33,89,90]. The possible reasons for the escalation of agricultural land
and the built-up area may be due to higher population growth rate and socioeconomic
development such as the fair prices for horticultural crops in the lowlands. Thus, more
people are engaging in growing crops in the catchment. Further, the influx of people from
outside and highland areas has resulted in an increase of cropland and extension of the
built-up areas to the lowland areas that were previously considered comparatively dry
and less productive. Perhaps we could experience more decrease in the area under forest;
however, most of the forest area falls in the upper area of the Kilimanjaro National Park,
which is protected by the law. Although, reports still show anthropogenic activities such
as logging, forest burning, charcoal making, the establishment of new villages, livestock
keeping and cultivation, landslides, and quarrying across the protected forest reserve [91].
Additionally, the conversion of the lower montane forest into coffee plantation are among
the factors contributing to forest loss [92].

Despite the conservation activities, it is worth stating that there is still a flimsy decrease
in the forest area, especially close to the forest borders and in the lowlands [29]. Thus,
observation shows that the magnitude of variation in ET values is small despite the change
in LC with time. However, monthly fluctuations in ET support that the model perfectly
captures cropping season that is expected to have relatively higher ET values during vege-
tative stages; although in general agreement with the fact that seasonal crops (agricultural
land) have less ET than perennial trees [5,80]. Studies show that evapotranspiration takes a
countable amount of water infiltrating the soil in semiarid regions, and effective recharge
depends solely on extreme rainfall events [93].

The expansion of agricultural land, built-up areas, and shrinking of grassland [41]
may have resulted in increased surface runoff in the KWK watershed, especially in the
lowlands. The changes in WatQ as a result of changes in vegetation is due to changes in
CN values. CN values increased with an increase in built-up areas, bare agricultural lands
and decreased forest areas [85]. Although, the variation in land use results in changes
in hydrological processes, the soil types, geological conditions, and slope are among the
factors governing the impacts of land use changes on the water balance components [94].
Thus, KWK being located on the mountain slopes is expected to be affected by these factors.
Other studies reported a similar trend in the basin. For example, Kishiwa, Nobert [47]
predicted an increase in the annual streamflow by 10% in the year 2060 and steady growth
in the streamflow annually, taking 2001 as a baseline year.

Generally, in a situation where most vegetation is converted to built-up areas and the
expansion in agricultural land, compaction causes lower permeability and storage capacity
resulting in a lower infiltration capacity. Thus, transforming a substantial fraction of rainfall
into surface runoff. SurfQ and GWQ increases as the areas with cleared vegetation for
agriculture and built-up areas increases. A similar observation was reported in South
Africa, where SurfQ is higher and GWQ is lower in bare lands [95]; GWQ is higher in the
forest and other vegetative places due to increased infiltration into the shallow and deep
aquifers. This may be a reason for flood reoccurrence being common in lowland areas,
especially at the beginning of the season, where there are no plants in the farms.

4.4. The PLSR Model Explained Variations of Individual Land Cover Changes on Water Balance

The PLSR variable importance of the projected values (VIP) and weights of the inde-
pendent variables are given in Table 7. The highest VIP value was obtained in agricultural
land (VIP = 1.57), built-up area (VIP = 1.28), barren land (VIP = 1.13), shrubland and
grassland (VIP = 1.10). It can be noted from Table 7 that forest has comparatively lower
influence in impacting the selected water balance components (VIP 0.89). Nevertheless, the
forest is still important in influencing water balance components, whereas wetland and
water were of minor importance. The relative importance of predictors (VIP) shows that
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water and wetland exert comparatively less significance (VIP less than 0.8). Component
1 was dominated by agricultural land and built-up areas on the positive side, whereas
water, forest, barren land, grassland, wetland and shrubland were on the negative side. In
component 2, all land use/cover classes were negative sided except forest, which was on
the positive side. Component 3 was also dominated by the negative sided classes except
for forest and grassland, while the positive side included water, barren land, wetland and
shrubland, agricultural land and built-up areas.

4.5. Hydrological Impacts of Individual Land Cover Changes on the Selected Water
Balance Components

Most of the previous studies have shown that an increase in vegetation cover, partic-
ularly forests, leads to decreasing SurfQ and flood occurrence [5,21]. According to [96],
clearing of forest by 45% increased the SurfQ by around 40%. Additionally, an increase
in runoff due to replacing rangeland through expansion in agricultural land and built-up
areas was reported from 2000 to 2013 in the Olifants basin, South Africa [95].

Increased ET and increased runoff may be a result of the conversion of vegetated
areas to agriculture and built-up areas. However, the increased agricultural lands lead to
higher water abstraction [97]; this might be the reason for the slight decrease in ET in the
near future (Table 4). Increased SurfQ due to increased built-up area was reported in some
previous reports [98,99]. Therefore, it is envisaged that the observed reduction in ET reflects
the conversion to agricultural lands, which increases water use. Additionally, conversion
to agricultural land increases the CN value, thus reducing ET. Memarian, Balasundram [15]
also observed that an increase in a built-up area and agricultural land increases CN, thus
reducing ET.

Further, increase in cultivated lands is at the expense of other vegetation covers; thus,
increased runoff was also reported by Gashaw, Tulu [5] in the Andassa watershed, Blue Nile
Basin, Ethiopia, Woldesenbet, Elagib [80], and [100] in Rwanda. Contrary to these results,
the study by Twisa, Kazumba [53] in the Wami Ruvu basin revealed a negative influence on
surface runoff and water yield by natural forest, woodland, bushland, grassland, water, and
wetland. Further, the study reported a negative influence of the built-up area on GWQ and
ET. At the same time, natural forest, bushland, woodland, grassland, water, and wetland
had a positive influence on ET and GWQ. However, KWK being located on a mountainous
place with complex terrain is expected to behave differently from other catchments.

Agricultural land and built-up areas are the main attributes in the changes in WatQ,
SurfQ, ET, and GWQ; this means that with the ongoing expansion in agricultural land and
built-up areas, the water balance of a watershed will be affected negatively. However, it is
worth mentioning that groundwater was not used in the study for validation; thus, care
must be taken during GWQ results interpretation. The observation supports the report
by Anand, Gosain [51], stating that the intensification of urban and cultivated lands is an
essential environmental stressor that significantly affects water balance components of a
catchment. For instance, an increase in the built-up area contributes to a higher proportion
of surface runoff and streamflow and lowers the quantity of groundwater flow [86].

The increase in WatQ observed in 2018 (Table 4) may chiefly be a result of a decrease
in ET resulting from changed forest covers [101]. The small increase in water yield as a
result of land cover effects has been reported in an East African watershed [102]. Previous
studies also reported an increase in the WatQ and decreased ET [103,104]. Additionlly, an
increase in SurfQ due to deforestation and vice versa has been reported in a watershed in
South China [105].

Increased SurfQ and decreased ET rate observed in Table 4 may equally be attributed
to increased built-up areas, and reduction in forest cover. Previous reports that used
the SWAT model also reported a similar trend in the Jinjiang catchment, China, due to
deforestation and increased built-up areas [106]. Forest degradation and increased built-up
areas decrease ET and increase SurfQ in SWAT simulations [107]. Additionally, Sajikumar
and Remya [108] used SWAT to assess the impacts of the land cover on runoff; their report
shows increased runoff due to changed land cover in Kerala.
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Generally, the increase in runoff may imply increasing soil erosion and sedimentation
if left unattended. Twisting land use trends to allow more vegetation cover will reduce
wet season flow, increase dry season flow, SurfQ, LatQ and GWQ [75]. Techniques such
as replacing cereals with fruit trees and intensifying agronomic practices will advocate
increasing productivity of small farms and discourage opening up more land for agriculture.
Further, using soil and water management practices may be useful to increase vegetation
cover at the KWK watershed.

The PLSR results in Table 7 show that all land use/cover classes are important in
influencing changes in water balance components, except for shrubland and wetland.
Thus, regulation of other LC classes should be implemented to regulate the impacts in the
hydrology of the KWK watershed. The current reported rapid population growth, climate
change and expansion in agricultural land, built-up areas, and other economic activities
can significantly impact the future if the situation goes unattended [109,110]. The PLSR
results from this study are suitable for designing and carrying out sustainable natural
resources management practices at the basin scale and other similar environments [111].
Moreover, the results from this study show the potential of using a combined PLSR and
hydrologic modeling framework for impact studies in data-constrained environments.

5. Conclusions

In this study, the implication of the hydrology of the KWK watershed due to changes
in land cover over the past few decades and in the near future were evaluated using the
calibrated SWAT model and PLSR. The KWK watershed has mostly featured transformation
in agriculture and built-up area; thus, a forecast for the future hydrological processes based
on changes in land cover in the study area was presented in this study. The effect of
land cover change resulting from various land use activities such as urbanization and
expansion in agricultural activities is evident. Explicitly, the findings of this work show
that changes in the water balance components are the function of the land use changes
and vegetation distribution within the watershed. The major LULC changes that affected
surface runoff and groundwater components in the watershed during the study period
were the expansion of agricultural land, built-up area, and shrinking of the grassland.

The cultivation land area is directly proportional to the surface runoff but inversely
proportional to the groundwater flow. However, the decline in woody shrub area has
the same effect as the expansion of cultivation land on surface runoff and groundwater
flows. Farmland expansion has increased surface runoff and water yield while decreasing
the groundwater component and actual evapotranspiration in the KWK watershed. Simi-
larly, the decline in woodland coverage resulted in higher surface runoff and water-yield
components but decreased groundwater components and actual evapotranspiration.

The surface runoff of the area during the wet season due to land use and land cover
changes shows the implications in the water resources, environmental wellbeing and
economic activities in downstream users, especially fishing and irrigation activities along
the Nyumba ya Mungu Dam. The results suggest the threatening of the supply of ecosystem
services, threatening the people living within and surrounding the watershed. Further,
the increased surface runoff would trigger flood recurrence, and possibly sedimentation
on the lower slopes poses a threat to fishing and agriculture production and hydropower
production. The results of this study have contributed to understanding the attribution
of land use changes on the hydrologic components. The information generated from this
work will help stakeholders and managers to make rational choices regarding land and
water resources management. The approach utilized in this work can be applied to the
whole basin and other basins to predict the land use changes and associated impacts on
water resources.

Limitations of the Study

The analytical power of PLSR is outstanding and useful for data analysis in many
dimensions. However, PLSR is not with limitations; one limitation is that it only provides
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a general insight into the relationships between different predictors (land use types) and
water balance components. However, it cannot provide detailed information on the spatial
land use patterns [19,77]. The spatial distribution patterns of land use can significantly
influence hydrologic processes at different scales. Thus, future research could focus on the
relationship between spatial land use patterns and changes in the water balance compo-
nents. Furthermore, the availability of good quality meteorological and river discharge
datasets, and spatial distribution network might have affected the results to some extent.
Thus, future studies should focus on generating good quality datasets and improve spatial
distribution of ground based meteorological stations.
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