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Abstract: Alzheimer’s disease (AD) is a chronic neurodegenerative disease and the most common
form of dementia in older adults. Treatment of AD symptoms is very challenging and expensive.
Appropriate diet as well as mental and physical activity may delay or reduce the occurrence of
AD. It is unknown whether environmental factors offer potentially protective effects against the
development of AD. We explored the possible beneficial effects of greenspace (trees and herbaceous
cover) on the rate of AD in the mid-Atlantic US. Data for initial AD medical claims during 2011–2013
were obtained from Medicare records for 2999 ZIP codes. The percentages of land cover classes in
each ZIP code were calculated based on high-resolution land cover imagery. Associations between
AD and greenspace, blue space (water), and other variables were examined using zero-inflated
Poisson models. The rate of AD was negatively associated with greenspace (for a greenspace increase
of 10%, risk ratio (RR) = 0.91, 95% confidence interval (CI): 0.89–0.94), and blue space (for a water
area increase of 10%, RR = 0.85, 95% CI: 0.81–0.89). The inverse relationships between greenspace and
the risk of AD held across season, gender, and race. The rate of AD was positively associated with
the concentration of fine particulate matter (PM2.5) (RR = 1.03, 95% CI: 1.02–1.05 for an increase in
PM2.5 of 1 µg/m3). Our results suggest that greenspace may have protective effects for AD, although
potential mechanisms are unclear and require further investigation.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that gradually
impairs memory and thinking skills, leading to the loss of independence and the inability
to perform the basic activities of daily life [1]. The overproduction of the amyloid-β (Aβ)
peptides and hyperphosphorylation of the Tau protein and its subsequent deposition are
hypothesized as two major mechanisms to develop AD [2,3]. While its mechanism is
unknown, it is the most common cause of dementia in older adults and is ranked as the
sixth leading cause of mortality in the US. More than 5 million people may currently have
AD in the US; this number is expected to rise rapidly in the next decades [4,5].

AD is irreversible, and while certain drugs may alleviate some symptoms of AD, none
can cure it or stop its progression [6]. Total costs for health care and long-term care are
estimated at hundreds of billions of dollars, posing a considerable financial burden on
families and making it the most expensive disease in the US [4].

AD may have both genetic and non-genetic factors that play roles in its develop-
ment [1,7]. Age is the primary risk factor for AD [8] with nearly 95% of AD patients aged
65 and older [1]. Family history is the second largest risk for AD, and genetics may be
responsible for 80% of cases [9]. Polymorphisms in ApoE, SORL1, and GSK3 genes are
thought to be the major genetic risk factors [10–12]. For non-genetic factors, cerebrovas-
cular disease, high blood pressure, Type 2 diabetes, heavy body weight, high plasma
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lipid levels, metabolic syndrome, smoking, and traumatic brain injury have been found to
be positively associated with AD. Environmental pollutants as a risk factor for AD have
also been gradually recognized [10]. Studies have found that metals (mercury, arsenic),
insecticides/pesticides, nanoparticles, and air pollutants might induce AD or AD-like
progression in animal and human subjects [10,13,14]. Several epidemiological studies have
also found that long-term exposure to fine particulate matter (PM2.5), one of the major
traffic-related air pollutants, was positively associated with AD incidence [15–17].

Some factors may offer protection from AD. For example, diet (e.g., Mediterranean
food), physical exercise, and intellectual activity may reduce AD risk [4,5]. Greenspace,
such as trees, gardens, and parks, has been found to provide many human health benefits
because of the filtration of air pollutants, promotion of physical activity and social contact,
and reduction of stress and depression [18,19]. Recent studies have shown that exposure
to greenspace may be beneficial to mental health and brain health [20,21]. Greenspace
may be an environmental protective factor for human health, including for AD. However,
the relationship between greenspace and AD is unknown. Water views in the landscape
have frequently been expressed as a human preference (reflected in real-estate values and
vacation destinations) and a restorative element [22,23]. While research on mental health
or cognitive benefits of blue space is scarce [24], time spent at the beach has been linked to
healthy behavioral development in Barcelona schoolchildren [25]. Therefore, this study
examined the association of green and blue spaces with the rate of AD in the mid-Atlantic
US. It also sought to replicate previously documented associations between AD rate and
PM2.5, and to control for PM2.5 in models since PM2.5 has been identified as a possible
risk factor for AD. Furthermore, by assessing natural infrastructure and air pollution in
combination, this study may offer insights into possible protective effects of vegetation on
AD through particulate entrapment [26].

2. Materials and Methods
2.1. Study Area

Our study area encompassed 2999 postal ZIP codes in the mid-Atlantic United States
(all or parts of New York, Pennsylvania, Delaware, Maryland, West Virginia, Virginia,
and Washington, DC, Figure 1). It was selected because the effects of PM2.5 on human
neurological diseases have been observed here [16]. In addition, a high-resolution (1 m)
land cover dataset is available for this area. According to the US Census Bureau’s American
Community Survey for 2009–2013, the area had a population of 26 million.

2.2. Alzheimer’s Disease Data

The AD data were obtained from Medicare enrollees aged ≥ 65 whose medical records
are held by the Center for Medicaid and Medicare (CMS). The whole dataset contains the
records from 1999 to 2013. In the CMS dataset, each enrollee has a unique identification
number and codes to indicate the types of diagnoses according to the International Classifi-
cation of Disease-Ninth Revision (ICD 9). For enrollees with records of AD (ICD 9 code
331.0) during the study period, we extracted the earliest record for analysis. Specifically,
we selected the first record of a patient who was diagnosed with the AD from the dataset
and then selected the data for 2011–2013 to most closely match the high-resolution land
cover data. Information about the date (year, month, and day) of health care, residential
location (ZIP code, county and state), race, and gender were also available. As the specific
address for each patient was withheld, we analyzed the data at the ZIP code level. The
data were also aggregated by month to correspond to the PM2.5 data.

2.3. Land Cover Data

A 2013–2014 classified land cover dataset for the study area was obtained from the
Chesapeake Bay Innovation Center [27]. This one-meter resolution dataset is derived
from photography collected by the USDA National Aerial Imagery Program and covers
approximately 259,000 km2 in and around the Chesapeake Bay watershed. The land cover
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was originally classified into 6 major categories: water, trees (including shrubs), herbaceous,
barren, impervious, and roads. We combined the tree and herbaceous classes into one
greenspace class and calculated the percentage of each resulting type of land cover by ZIP
code using 2010 ZIP code from the US Census Bureau [28].
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We also obtained data for major roadways in the study area from NavTEQ™ (Chicago,
IL, USA, the leading provider of maps, traffic and location data in North America). Using
ArcGIS 10.3 (ESRI, CA, USA), we calculated density of major roads (interstate, state high-
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ways, and major arterials) by ZIP code using the total length of major roads in a ZIP code
divided by the total area of that ZIP code.

2.4. PM2.5 Data

We obtained PM2.5 data for the study area from the U.S EPA [29]. These are estimates
at the census tract level, which were downscaled from regional models and fused with
data from field monitors. We assigned these PM2.5 values to ZIP codes using a nearest
neighborhood method. Specifically, we calculated the distances between census tract and
ZIP code centroids. A PM2.5 value assigned to a ZIP code was the same as the value of the
nearest census tract.

2.5. Demographic and Socioeconomic Status Data

We obtained demographic and socioeconomic status data for each ZIP code from the
US Census Bureau’s five-year American Community Survey for 2009–2013. We restricted
the population data to age 65 and above because the Medicare data represents primarily
this age group. Additionally, AD emerges primarily from within this population [1].

We calculated the percentage of this population in each ZIP code by gender and
predominant race (white and black) for stratified analyses. We used the median annual
household income to indicate socioeconomic status (SES) by ZIP code. Population density
was calculated using the total population in a ZIP code divided by its area.

2.6. Statistical Analysis

We used the zero-inflated Poisson model [30] to examine the association between AD
and exploratory variables since the response variable, the number of earliest-identified AD
records in each ZIP code during the study period, is count data with excess zeros. The
exploratory variables included monthly average PM2.5 concentration, percent greenspace,
percent water area, median annual household income, ZIP code area, population density,
and road density. The natural-log transformed population (age ≥ 65) data was used as the
off-set term in the model. We checked for outliers in the response variable and removed
extreme large values based on the histogram of the data (nearly 1% of observations) from
the dataset. Then, we examined multicollinearity among exploratory variables using
correlation analysis and variance inflation factors (VIF) [31]. If two or more variables were
highly correlated (i.e., r > 0.6), only one variable was included in the model. We also
selected the exploratory variables based on the value of the Akaike information criterion
(AIC). A smaller AIC suggests a model with a better fit. The statistical analysis was
conducted with SAS 9.4 (SAS Institute, Inc, Cary, NC, USA).

We used risk ratios (RRs) to assess the strength of associations between AD and
the exploratory variables. If an RR was above 1.00, a positive association was assumed,
while if it was below 1.00, a negative or inverse association was assumed. We chose the
significance level at 0.05. Greenspace and water were modeled in 10% increments to
reflect more meaningful land cover change, as the effects of 1% changes in greenspace
and water are trivial [21]. Thus, the RRs for greenspace and water indicate the changes
in the risk of AD when these land cover variables increase by 10%. To evaluate seasonal
effects on the associations, we stratified the monthly data into spring (March, April, and
May), summer (June, July, and August), autumn (September, October, and November) and
winter (December, January, and February), and then ran the model for each season. We
also stratified the model by gender and race.

3. Results
3.1. Description of AD Data and Explanatory Variables

Monthly AD by ZIP code ranged from 0 to 5, with a mean value of 0.067 and a
standard deviation of 0.29 (Table 1). Monthly average PM2.5 concentration by ZIP code
was 9.073 ± 2.252 µg/m3 (Table 1). Greenspace was the major land cover type, account-
ing for 85.01 ± 17.51%. Water area accounted for 3.74 ± 9.25% (Table 1). The median
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annual household income was $29,315 ± 11,805 and the mean population density was
5.3 ± 18.96 persons/km2 (Table 1). The percentages of males and females were approxi-
mately equal (Table 1). In the study area, the major race was white, accounting for 85.63%
of the population. The black population accounted for 9.34%.

Table 1. Descriptive statistics of key variables by ZIP code.

Variables No. Observations Mean Standard
Deviation Minimum Maximum

Medicare claims data
Initial AD claims/month 106,763 0.067 0.290 0 5

Monthly claim rate 106,763 2.6 × 10−6 1.3 × 10−6 0 3.98 × 103

Environmental data
PM2.5 (µg/m3) 106,763 9.073 2.252 4.485 0.053
Greenspace (%) 106,763 85.013 17.508 7.08 99.77

Water (%) 106,763 3.735 9.248 0 85.73
Covariates

Median income ($) 105,073 29315 11805 2542 135865
Male population (%) 106,763 50.028 7.753 0 100

Female population (%) 106,763 49.972 7.753 0 100
White population (%) 106,763 85.623 19.828 0 100
Black population (%) 106,763 9.338 16.976 0 100
ZIP code area (km2) 106,763 80.564 100.716 0.007 872.515
Population density

(1000/km2) 106,763 5.300 18.961 0.001 712.326

Road density (km/km2) 109,405 0.789 1.711 0 58.555

Medicare claim: An application for Medicare coverage of a medical visit or procedure. Monthly rate: monthly initial AD records/population
aged 65 and above.

The results of Pearson correlation analysis showed that both monthly AD and AD rate
were positively correlated with PM2.5, median income, population density, percentages
of female and black populations, road density, and ZIP code area (r > 0.0, p < 0.01), but
they were negatively correlated with the percentage of greenspace and water area, and the
percentages of male and white populations (Table 2).

Table 2. Pearson correlation between monthly initial records and rates of Alzheimer’s disease and exploratory variables.

Variables (Unit) Monthly Initial Records Monthly Rate

r p r p

PM2.5 (µg/m3) 0.069 <0.001 0.050 <0.001
Greenspace (%) −0.099 <0.001 −0.057 <0.001

Water (%) −0.002 <0.001 −0.021 <0.001
Median income ($) 0.030 <0.001 0.027 <0.001
Population density 0.059 <0.001 0.060 <0.001

Male population (%) −0.047 <0.001 −0.026 <0.001
Female population (%) 0.0465 <0.001 0.026 <0.001
White population (%) −0.125 <0.001 −0.076 <0.001
Black population (%) 0.104 <0.001 0.061 <0.001

Road density (km/km2) 0.031 <0.001 0.025 <0.001
ZIP code area (km2) 0.062 <0.001 0.062 <0.001

3.2. Modeled Associations

The results from the final zero-inflated Poisson model are presented in Table 3. Five
explanatory variables were included in the final model, which are PM2.5 concentration, the
percentage of greenspace, the percentage of water, median income, and population density.
The results showed that AD rate was positively associated with PM2.5 (for a 1 µg/m3

increase in PM2.5 concentration, RR = 1.03, 95% confidence interval (CI) = 1.02–1.05)
(Table 3). In contrast, AD rate had a negative association with greenspace (RR = 0.91,
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95% CI = 0.89–0.94) and with water area (RR = 0.85, 95% CI = 0.81–0.89) (Table 3). Both
median annual household income and population density had significant negative associa-
tions with AD rate (RR = 0.90 and 0.91, respectively) (Table 3).

Table 3. Association between Alzheimer’s disease and exploratory variables.

Exploratory Variables (Unit) RR 95% CI p

PM2.5 (µg/m3) 1.03 1.02–1.05 <0.001
Greenspace (10%) 0.91 0.89–0.94 <0.001

Water (10%) 0.85 0.81–0.89 <0.001
Median income ($10,000) 0.90 0.88–0.92 <0.001

Population density (1000/km2) 0.91 0.88–0.93 <0.001

3.3. Seasonal Effects on the Associations

AD was positively associated with PM2.5 across seasons. The association was slightly
stronger in the summer (RR = 1.08, 95% CI = 1.05–1.10) and weaker in the winter (RR = 1.04,
95% CI = 1.02–1.06) (Figure 2). Negative associations were observed for greenspace, water,
median income, and population density for all four seasons (Figure 2). The association
with greenspace was slightly stronger in spring and autumn but slightly weaker in winter.
Similarly, the association with water was slightly stronger in autumn but slightly weaker in
winter. Overall, the associations in winter were slightly weaker than those in other seasons,
but the differences were not statistically significant (Figure 2).
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3.4. Association Stratified by Gender and Race

The gender and race stratified models showed that associations between AD rate and
exploratory variables were similar across strata (Figure 3). However, the association with
PM2.5 was extremely significant (p < 0.01) in white subjects but only slightly significant
(p = 0.05) in black subjects. The AD rate had a significant negative association with median
income for white patients but not for black patients (Figure 3).
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4. Discussion

We conducted a large-scale ecological analysis to explore the connection between AD
rate and exposure to greenspace and blue space in the mid-Atlantic US. By analyzing AD
from Medicare records and land cover measured by high-resolution imagery, we found a
significant inverse relationship between AD rate and the percentages of greenspace and
water area. The results were consistent when we stratified the model by season, gender, and
race and controlled for confounding variables including income and population density.
Our study is the first to investigate the possible protective effects of greenspace and blue
space on AD rate. Findings from this study suggest that exposure to greenspace and blue
space may reduce the risk of developing or delay the onset of AD, providing a new insight
to mitigate the high incidence of the disease.

The negative association between greenspace and AD rate in the study area may
be due to air pollutant filtration by trees and other vegetation [32,33]. It was estimated
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that nearly 17,400 million kg of air pollutants were removed by forests and trees in the
conterminous United States in 2010 [34]. Herbaceous cover has also been found to take up
air pollutants, including PM2.5 [35]. Previous studies have shown that air pollutants are
one of the major environmental risk factors for AD, especially traffic-related air pollutants
such as PM2.5 [15–17]. Our previous study also suggested that greenspace may have a
benefit to brain health through buffering traffic-related air pollution [21]. Generally, air
pollution is more serious in urban than in rural areas. However, rural areas can have
elevated vehicular air pollutant levels due to diesel highway trucks and farm vehicles.

Greenspace may also reduce the risk of AD by promoting physical activity such as
jogging, walking, and biking. Physical exercise may support the maintenance of brain
volume, and mitigate obesity, hypertension, stroke, and other AD risk factors [36]. Phys-
ical activity has been negatively associated with dementia and is generally regarded as
protective [37]. Greenspace (e.g., greenway trails, parks, and gardens) provides attrac-
tive and safe places for physical activities, and as such, it may confer substantial health
benefits [38–40]. Furthermore, greenspace may play a protective role in the risk of AD
through depression reduction. The connection between depression and AD has long been
recognized [41,42]. For example, one study has shown that depressed patients were more
cognitively impaired and more disabled in daily activities [42]. A systematic review and
meta-analysis concluded that late-life depression has positive associations with the risk for
Alzheimer’s disease and all-cause dementia [43]. Exposure to tree canopy, which is best
associated with perceived greenspace [44], may reduce the risk of dementia such as AD
through stress reduction. A large study in Australia showed exposure to tree canopy was
associated with a lower risk of dementia [45]. Meanwhile, an inverse association between
neighborhood greenspace and depression has been observed in several studies [46–48],
suggesting that greenspace may improve neurological health. Greenspace also provides a
setting for social interaction [49,50] and engagement with nature, both of which have been
associated with mood [51,52] and are beneficial particularly for the elderly [53].

Similarly, we observed a negative association between water and AD rate. The
beneficial effects of proximity to blue space may also be related to the promotion of
physical activities and social interaction, and stress reduction [22,24,53]. Relative to PM2.5,
water does not filter air pollutants directly; however, surrounding wetlands may decrease
concentrations of air pollutants, including particulate matter [54]. In addition, pollutants
and particulates are more likely to be suspended in the air when it is very dry; near water
areas with higher humidity, air pollutants may be reduced [55].

Our results also revealed that the risk of AD was negatively associated with household
median income and population density. It is possible that the causal mechanisms involved
in AD differ in urban versus rural occupations, and that air filtration, physical activity, and
other benefits of greenspace vary across urban and rural landscapes and vegetation types.

One major strength of this epidemiological analysis is that we used high-resolution
classified land cover to measure greenspace. Many previous studies used the normalized
difference vegetation index (NDVI) to quantify average “greenness” or used medium-
resolution remotely sensed images to calculate greenspace. The 1-m land cover data
provide more accurate measures of greenspace than those in other studies. Second, our
study was conducted across a large spatial extent. Since factors associated with AD are
expected to be subtle, the larger spatial extent of the data may allow better discrimination
of potential associations, thus potentially increasing the significance of the association
between greenspace and the risk of AD.

Our study has a few limitations. First, we do not have any information about where,
when, or how long residents were exposed to greenspace. Therefore, the exposure is
unclear and is represented only by the percentage of greenspace in the residential Zip
code. Second, because of the scarcity of high-resolution imagery, we investigated only
three-year data, which is a relatively short period for studying AD. Furthermore, our study
was observational rather than experimental, and it was conducted at the ZIP code level
instead of the individual level due to the shortage of finer spatial resolution of the Medicare
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data. The associations at the ZIP code level are more likely subject to confounding bias
if the background rate of the disease is correlated with those confounding factors. This
study design cannot confirm a causal relationship between greenspace or blue space and
AD rate. Although this ecological study has many limitations due to data availability and
the difficulty of the question, this work is the first to explore potential health benefits of
green space on AD. Given the high rate of AD, exposure to greenspace and blue space may
be a feasible way to delay or mitigate the development of AD, thus reducing the cost of
AD health care and the suffering of AD patients and their families.

5. Conclusions

We observed a lower AD rate associated with increasing greenspace and water area in
the mid-Atlantic US. This relationship remained when our model was adjusted for PM2.5,
income, and population density, and it was consistent across seasons, gender, and race.
The possible benefits of greenspace and blue space may occur through multiple pathways,
but as of yet, these are unclear and require further investigation.
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