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Abstract: The growing impact of CO2 and other greenhouse-gas (GHG) emissions on the socio-
climate system in the Western Cape, South Africa, urgently calls for the need for better climate
adaptation and emissions-reduction strategies. While the consensus has been that there is a strong
correlation between CO2 emissions and the global climate system, few studies on climate change
in the Western Cape have quantified the impact of climate change on local climate metrics such as
precipitation and evaporation under different future climate scenarios. The present study investigates
three different CO2 emissions scenarios: Representative Concentration Pathway (RCP) 2.6, RCP
4.5, and RCP 8.5, from moderate to severe, respectively. Specifically, we used climate metrics
including precipitation, daily mean and maximum near-surface air temperature, and evaporation to
evaluate the future climate in Western Cape under each different RCP climate scenario. The projected
simulation results reveal that temperature-related metrics are more sensitive to CO2 emissions than
water-related metrics. Districts closer to the south coast are more resilient to severer GHG emissions
scenarios compared to inland areas regarding temperature and rainfall; however, coastal regions
are more likely to suffer from severe droughts such as the “Day-Zero” water crisis. As a result, a
robust drying signal across the Western Cape region is likely to be seen in the second half of the
21st century, especially under the scenario of RCP 8.5 (business as usual) without efficient emissions
reduction policies.

Keywords: greenhouse gas (GHG); CO2 emissions; RCP; precipitation; evaporation; water balance;
South Africa; Western Cape

1. Introduction

The effects of climate change and global warming have exacerbated the need for better
water management strategies and emissions reduction policies. The severity of the future
impact of climate change is largely dependent on people’s present understanding and
ability to adapt, with government and policymakers playing a critical leading role [1].
A thorough and integrated understanding of both climate history and future projection,
and both the inherent mechanisms and their implications to the society, is important for
building a strong resilience to future climate change for a region. Adaptation is particularly
critical to secure social-economic well-being [2,3]. For instance, farmers are changing
their selection of crops and the timing of their field operations to adapt their farming
strategy to future impacts of climate change to maintain agricultural productivity and rural
livelihoods, although the relationship between farmers’ perception and their adaptation to
future climate change is far away from being fully understood [4].

South Africa has always been one of the most vulnerable regions to climate change
on earth, with a mean annual temperature increase by at least 1.5 times the observed
global average of 0.65 ◦C during the past five decades [5,6]. In addition to temperature
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increase, precipitation is projected to decrease with higher spatial variability, along with
drier rainy seasons and higher risks of severe droughts and extreme weather events across
the southwestern regions of Africa from now on [7]. For Western Cape Province, the lack of
rainfall, decreasing storage levels in major reservoirs, increasing water demand driven by
population growth and urban expansion, combined with problematic and ineffective water
management practices led to the “Day-Zero” water crisis which caused serious troubles to
local citizens, businesses, and agriculture [8–10].

Most research that focused on the meteorological aspects of the drought used only
precipitation to approximate drought intensity, overlooking the role of other climate metrics
such as near-surface air temperature, evaporation, and their internal relations. For example,
Pascale et al. [11] used a higher resolution climate model to further highlight the role of
anthropogenic climate change and provided a clear and well-supported mechanism to
explain the cause of the increase in drought risk in the South Africa region. They illustrated
that a reduction in precipitation during the shoulder seasons is likely to be the cause of
drought risk in southwestern Africa in the 21st century. While their study greatly increases
the confidence in the projections of a drying South Africa region, they only analyzed the
drought risk from a rainfall deficit perspective, ignoring the combined effect of precipitation,
temperature, and evaporation. Naik and Abiodun [10] conducted a study to investigate
the projected drought characteristics over the Western Cape, South Africa, using CORDEX
simulation data, and stressed the importance of the role of potential evapotranspiration
(PET) on future drought characteristics. However, they only considered the RCP 8.5
scenario, and more analysis needs to be done under other climate scenarios to better
quantify the uncertainties of future climate change. Pendergrass et al. [12] investigated
the relationship between extreme precipitation and different emissions scenarios and
concluded that the increased rate of global-mean precipitation per degree of global-mean
temperature increase differs for greenhouse gas and aerosol forcing scenarios. However,
their global-level research provides very limited insights that could be used in local regions.

In this context, the overarching goal of the present study is to quantify the effect of
climate change on the climate and hydrological system over six main districts in Western
Cape Province under 3 climate scenarios: RCP 2.6, RCP 4.5, RCP 8.5.

Representative concentration pathway (RCP) 2.6, is a “very stringent” and optimistic
pathway that requires that CO2 emissions start to decline by 2020 and go to zero by 2100. It
also requires CH4 concentration to approximately cut to half of the CH4 levels in 2020 and
the SO2 emissions to decline to about 10% of the 1980–1990 level. This emission scenario
is representative of the literature on mitigation scenarios aiming to limit the increase of
global mean temperature to not beyond 2 ◦C and is shown to be technically feasible in the
IMAGE integrated assessment modeling framework from a medium emission baseline
scenario, assuming full participation of all countries [13].

RCP 4.5 is a scenario of long-term, global emissions of greenhouse gases, short-lived
species, and land-use-land-cover that stabilizes radiative forcing at 4.5 W/m2 up to the
year 2100 without ever exceeding that value [14]. RCP 4.5 is a stabilization scenario and
assumes that climate policies are invoked to achieve the goal of limiting emissions and
radiative forcing. The application of RCP 4.5 in climate models provides a platform to
explore the long-term climate system response to stabilizing the anthropogenic components
of radiative forcing [14].

RCP 8.5 is the highest greenhouse-gas emissions pathway among the three climate
scenarios chosen in the study. This scenario does not include any specific climate mitigation
strategy, increasing greenhouse-gas emissions as well as concentrations considerably over
time, leading to a radiative forcing of 8.5 W/m2 by the end of this century [15]. Hence, it
represents the upper bound of the RCPs’ set system, which can also be called the business-
as-usual scenario [15].

By conducting this research, we aim to answer the following research questions: (1)
How do different CO2 emissions scenarios impact the climate and hydrological system in
the Western Cape region? (2) How are different districts within Western Cape responding
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to different CO2 emissions? The paper is structured as follows: Section 2 describes the data
and methods used in the study, Section 3 presents the results and discussion, and Section 4
delivers the conclusions and implications of the study.

2. Methods
2.1. Study Region

We chose Western Cape Province in South Africa as our study region, which is located
in the southernmost section of Southern Africa (Figure 1). It is surrounded by Northern
Cape Province and Eastern Cape Province, as well as the Atlantic Ocean in the west and the
Indian Ocean in the south. It ranges from 15.0◦ E to 25.0◦ E longitudinally, and 30.0◦ S to
35.0◦ S latitudinally. The Western Cape accounts for 12% of South Africa’s total agricultural
area, provides 20% of the nation’s total agricultural production outputs, and nurtures
a world-famous wine appellation [16,17]. The climate conditions across the region are
temperate Mediterranean with warm dry summers and mild moist winters, rendering
it favorable for cereal farming such as wheat, oats, and barley, and viticulture [10,18,19].
Average summer temperatures range from 5 ◦C to 27 ◦C, while winter temperatures range
from 5 ◦C to 22 ◦C [20]. The Western Cape is one of South Africa’s driest regions with
approximately 350 mm annual precipitation, well below the national annual average of
500 mm precipitation [21]. Precipitation is also highly heterogeneous and varies greatly,
from semi-arid areas to relatively wet areas on the windward slope of mountains [22].
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Figure 1. The study domain depicting the six main districts (City of Cape Town, West Coast, Cape
Winelands, Overberg, Garden Route, Central Karoo) in the Western Cape region (South Africa). The
black solid line delineates the political boundary of each main district in the Western Cape.
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The Western Cape is the fourth largest of the nine provinces with an area of
129,449 square km, and the third most populous province with an estimated 7 million
inhabitants in 2020 [23].

2.2. Data

In this study, we obtained the Coordinated Regional Downscaling Experiment Sim-
ulations (CORDEX) “Phase 1” simulation data from the Earth System Grid Federation
(ESGF). The CORDEX models have been proved to be able to correctly capture the spatial
distribution of major climate variables over the Western Cape region and reproduce the
essential climatic features in the observed temperature and moisture fields [10]. Thus, they
are reliable models to predict the future climatic system over the Western Cape region.
“Phase 1” data are made available at the monthly temporal resolution, 0.44-degree spatial
resolution, by far the largest GCM-RCK downscaled data available. We downloaded the
data under AFR-44, which indicates the Africa continent with 0.44-degree downscaling.
We selected several variables including pr (precipitation), tas (average near-surface air
temperature), tasmax (daily average maximum near-surface air temperature), and evspsbl
(evaporation) as key metrics to describe the regional climate and hydrological system in
Western Cape. RCP 2.6, RCP 4.5, and RCP 8.5 were selected as experiment configurations
and monthly data were downloaded. We selected MPI-M-MPI-ESM-LR as the driving
model for the reason that it is the only driving model available for all 3 RCP scenarios.
Moreover, its overall performance is better than its predecessor ECHAM5/MPIOM model
based on a modified Reichler–Kim standardized error due to improvements of the extrat-
ropical circulation [24]. RCA4 was selected as the regional climate model (RCM) because
a recent study found that it can adjust the boundary conditions, resulting in a significant
reduction of biases in the dynamically downscaled outputs [25]. Furthermore, many pre-
vious studies verified the credibility and advantage regarding the MPI-ESM-LR-RCA4
(GCM-RCM) chain on the projection of climate change signal over different CORDEX
regions [26,27]. Full information regarding 3 downscaled GCMs data in this study is
summarized in Table 1.

Table 1. Summary of the simulation data.

Domain Resolution Driving
Model

Time
Frequency

Downscaling
Resolution

RCM
Model Ensemble Variable Experiment

AFR 0.44 MPI-M-MPI-
ESM-LR

Monthly V1 RCA 4 R1i1p1
pr, tas,
tasmax,
evspsbl

Rcp26
Rcp45
Rcp85

Monthly spatial climatic data of the Africa continent for 3 RCP scenarios were im-
ported and analyzed in the open-source program RStudio [28]. The aim of using RStudio
at this step was to quickly retrieve the variable data and generate raster data for further
analysis. Specifically, we used the “ncdf4” package in RStudio to retrieve the climate
characteristics data such as precipitation, evaporation, and so forth for each RCP scenario
for the whole Africa continent. We used the “ncks” command from NetCDF Operators
(NCO) to downscale the data from the Africa continent to Western Cape, South Africa,
to focus on our study area. The downscaled data were then saved as raster data and im-
ported into ArcMap 10.8.1 software to be further analyzed. To reveal the spatial–temporal
patterns, we averaged the aforementioned climate metrics over every 20 years for each
0.44 by 0.44-degree grid inside the study area. The averaged data then were mapped for 4
two-decade spans from 2021 to 2100 for each of the 3 climate scenarios.

In addition, we also examined how the water availability will change across the
Western Cape region under 3 different emission scenarios using a simple water balance
approach in Equation (1):

P = Q + ET + dS/dt (1)
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where P is precipitation [mm/month], Q is discharge [mm/month], ET is evapotranspi-
ration [mm/month], and dS/dt is storage changes per time step [mm/month] [29]. We
used evaporation from the RCM model outputs as a proxy for ET since our purpose was
to examine the general trend of water availability. In this case, we used the sum of water
discharge and storage changes rate as a critical indicator of a region’s water availability,
which can be calculated as the difference between precipitation and evaporation [30–32].

3. Results and Discussions
3.1. Spatial–Temporal Patterns of Climate Metrics

In this section, each climate metric under three different GHG emissions is spatially
evaluated using outputs from three downscaled GCMs (Table 1). The results are well
aligned with a previous study by Naik and Abiodun (2020) that projected changes in
drought characteristics over the Western Cape that show a robust drying signal under the
RCP 8.5 emission scenario. In addition, by investigating more emission scenarios such as
the RCP 2.6 and the RCP 4.5 scenarios, this study highlights the importance of emission
reduction to alleviate the region’s future climate stress.

The precipitation ranges from 15 mm/month to 200 mm/month for the whole area,
with the junction of City of Cape Town, Cape Winelands, and Overberg receiving the most
precipitation and Central Karoo district receiving the least (Figure 2). A clear pattern is
seen that coastal regions generally receive more precipitation than inland regions in the
same period (Figure 2). There is no significant variability for precipitation distribution
under the scenario of the RCP 2.6 and the RCP 4.5 since no noticeable difference was found
in the period of 2081–2100 compared to that of 2021–2041. However, the region is dryer
under the scenario of the RCP 8.5 with much less precipitation received for the junction
of Cape Town, Cape Winelands, and Overberg that is relatively wet under the RCP 2.6
and the RCP 4.5 scenario, and the Central Karoo district will likely face droughts in higher
magnitudes and longer duration compared to the beginning of 21st century.
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The mean near-surface air temperature revealed a more apparent pattern under
three different CO2 emissions scenarios (Figure 3). The regional warming signal is not as
significant under the RCP 2.6 scenario; however, the signal amplified gradually across the
whole region under the RCP 4.5 and RCP 8.5 scenarios and with time. Inland districts such
as West Coast and Central Karoo face larger surface air temperature increases than districts
closer to the southern coast such as Overberg and Eden.
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emissions scenarios: (a–l) exhibit the mean near-surface air temperature projection pattern for the each 20-year span from
2021-2100 under the 3 different GHG emission scenarios.

Daily maximum surface air temperature is used typically as a signal for extreme
events such as heatwaves for a region. The daily maximum surface air temperature ranges
from 20 ◦C to 35 ◦C during the simulation period (Figure 4). West Coast and Central Karoo
are more vulnerable to potential heatwave risks, especially under the RCP 8.5 scenario
by the end of the 21st century (Figure 4). A similar trend is found as more variability of
maximum temperature occurred with intensifying GHG emissions. Inland districts such
as the West Coast, Central Karoo, and some areas of Cape Winelands are more likely to
encounter extreme weather under the RCP 8.5 scenario.
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Evaporation is a critical element that affects the region’s water budget. Evaporation
for the Western Cape area ranges from 10 to 205 mm/month in the future (Figure 5).
There is no significant variability for evaporation across different CO2 emissions scenarios.
However, there are decreasing trends in evaporation in inland districts such as the West
Coast and Central Karoo compared to coastal regions (Figure 5). Thus, coastal regions are
more resilient to more intense GHG emission scenarios in terms of evaporation since they
are easier to adapt to and recover from evaporation-induced extreme climate events caused
by GHG emissions increases.
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Figure 5. Spatial–temporal patterns of spatially distributed evaporation in Western Cape, South Africa (2021–2100) for 3
CO2 emissions scenarios: (a–l) exhibit the evaporation projection pattern for the each 20-year span from 2021–2100 under
the 3 different GHG emission scenarios.

The trend of water availability is going to deeply impact the economic activities,
tourism, agricultural practices, and people’s wellbeing in general for a region. Here we
consider the difference of precipitation and evaporation as net available water for each pixel
in the region, and a drought signal over a two-decade period time is identified when the
net available water is less than zero. For the RCP 2.6 and 4.5 scenarios, drought signals only
occur at limited locations such as coastal regions within the Overberg and Eden districts
(Figure 6). There is no significant temporal variability under this scenario. However, for
the RCP 8.5 scenario, a robust drying signal is expected across Western Cape from 2060
onward, with severe drought expectation near the coastal areas within the City of Cape
Town, Overberg, and Eden districts (Figure 6). One probable explanation is that although
rainfall is relatively abundant in coastal regions, it is countered by a higher evaporation
rate that results from temperature increase.
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Figure 6. Spatial–temporal patterns of net available water in Western Cape, South Africa (2021–2100) for 3 CO2 emissions
scenarios: (a–l) exhibit the net available water projection pattern for the each 20-year span from 2021-2100 under the 3
different GHG emission scenarios.

3.2. Regional Trends of Various Climate Metrics

We calculated the regional average for all the climate metrics to assess the overall
impact of various emission scenarios on Western Cape Province. In terms of precipitation
(Figure 7a), there is not much fluctuation under both the RCP 4.5 and RCP 8.5 scenarios.
However, there is an approximately 3.5% increase of rainfall with greater variability under
the scenario of the RCP 2.6 from the year 2020 to the end of the 21st century. For evaporation
(Figure 7b), there is no significant increase under both the RCP 2.6 and RCP 4.5 scenarios;
however, there is a steady increasing trend with about a 3.1% increase of evaporation in
2100 under the RCP 8.5 scenario. In other words, emissions increases will bring more
rainfall while causing more evaporation. However, both water-related characteristics did
not display a linear trend over time, as opposed to the trends of those temperature metrics.
Figure 7c,d shows that rates of change of temperature metrics are faster compared to those
of precipitation and evaporation over time, indicating higher sensitivities of temperature
metrics to GHG emissions. Figure 8 is a clear indication of how more emissions will
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increase the likelihood of water crises in the Western Cape. While the net water availability
is negative under all three emissions scenarios, the values under the RCP 2.6 and RCP 8.5
scenarios exhibit the opposite trend: For the RCP 2.6 scenario, water availability condition
in the Western Cape area improves after 2060 while the situation continues to get worse
and worse under the RCP 8.5 scenario.
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Figure 7. Projection of regional averaged climate metrics in Western Cape, South Africa for 3 CO2 emissions scenarios:
(a) regional average precipitation; (b) regional average evaporation; (c) regional average near-surface air temperature; (d)
regional average daily maximum surface air temperature.
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Figure 8. Projection of regional average water balance in Western Cape area for 3 CO2 emissions scenarios.

Temperature-related characteristics such as near-surface air temperature and daily
maximum surface air temperature are more closely connected to GHG emissions compared
to water-related metrics such as precipitation and evaporation. This is because increasing
greenhouse gases will directly affect the temperature, and temperature will further cause
rainfall to decrease and evaporation to increase [33].

3.3. Potential Policy Implications

Based on the results shown above, it is more likely to see severer droughts across the
Western Cape region when doing business as usual, as opposed to taking serious actions
and making policies to reduce GHG emissions. In terms of water availability, higher
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evaporation caused by regional warming offsets the relatively abundant rainfall for coastal
regions, and those regions may suffer severer water crises than inland districts.

Local government and policymakers could make efforts on at least two aspects to
increase water availability and avoid the “Day-Zero” water crisis problem: controlling the
emissions and at the same time, improving water usage efficiency and diversifying water
supply sources. First, in terms of emissions constraining technology, many innovative
technologies emerge as solutions to cut emissions. As an example of emission reduction,
smart-grid technologies are becoming popular that can use artificial intelligence (AI) to
introduce a layer of digital intelligence to the grid to enable the industry to respond to the
grid dynamically, restore power interruptions, accommodate alternative energy options,
and facilitate demand response strategies [34]. There is significant potential for improving
the efficiency of the electrical energy value chain and efficiency by introducing AI-based
smart-grid technologies [34]. Carbon-capture technologies may be a more localized ap-
proach; however, these require global cooperation and collaboration to reach the level of
significance. For improving water-usage efficiency, this requires citizens and government
to adopt a water-sensitive approach in city planning and development that could include
shifting water-management paradigms, developing new governance mechanisms, and
guiding diversification of water supplies to provide resilience to potential future climate
shocks [35]. In the meantime, local government should explore interventions that pro-
mote and proactively encourage behavioral change and address inequity regarding water
rights [35]. Finally, we have to emphasize the importance of governance across all adminis-
trative levels [36], because all policies and measures against climate change and improving
the livelihoods of the people that could last and be effective rely on proper governance.

4. Conclusions

In this study, Co-ordinated Regional Climate Downscaling Experiment (CORDEX)
data were used to examine the potential impacts of various greenhouse-gas emissions
(RCP 2.6, RCP 4.5 RCP 8.5) on the future climate systems in six districts within the Western
Cape, South Africa. The global simulations have been downscaled with RCA 4 for the
future 80 years of the 21st century. The precipitation and evaporation data were used to
approximately predict future drought in terms of net available water for the region. Both
spatial–temporal analysis and regional-average analysis suggest the following:

1. Different climate metrics will respond differently to emissions scenarios. The projected
simulation results reveal that temperature-related metrics are more sensitive to GHG
emissions than water-related metrics as expected, as lower emissions can considerably
alleviate climate vulnerability in Western Cape regions compared to business as usual.

2. Climate change poses a localized effect on different regions in Western Cape. Districts
closer to the south coast are more resilient to regional warming compared to inland
areas, but less so in terms of water stress.

3. A robust drying signal across the Western Cape region is likely to be seen in the
near future if we continue doing business as usual (as seen in RCP 8.5). Efficient
water-management practices and greenhouse-gas emissions reduction strategies are
urgently needed to avoid more severe droughts such as the “Day-Zero” crisis in 2018,
especially for the City of Cape Town and several other coastal regions within the
Overberg and Eden district.

This study highlights the importance of the impact of climate emissions scenarios (RCP
2.6, RCP 4.5, and RCP 8.5) on the regional climate change signals simulated by the model
chain MPI-ESM/RCA4. Since this is the only GCM-RCM model combination available,
the results cannot provide a comprehensive evaluation of possible climate change signals
in the region. Nonetheless, the results sufficiently demonstrated the great potential of
reducing climate risks and vulnerability under lower GHG emission scenarios for Western
Cape region. When more downscaled climate data across different RCPs are available for
Africa, it will enable uncertainty analyses and quantification of future climate change using
a sufficiently large ensemble of simulations.
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