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Abstract: This paper presents a stochastic approach to single-phase and three-phase EV charge
hosting capacity for distribution networks. The method includes the two types of uncertainties,
aleatory and epistemic, and is developed from an equivalent method that was applied to solar PV
hosting capacity estimation. The method is applied to two existing low-voltage networks in Northern
Sweden, with six and 83 customers. The lowest background voltage and highest consumption
per customer are obtained from measurements. It is shown that both have a big impact on the
hosting capacity. The hosting capacity also depends strongly on the charging size, within the range
of charging size expected in the near future. The large range in hosting capacity found from this
study—between 0% and 100% of customers can simultaneously charge their EV car—means that
such hosting capacity studies are needed for each individual distribution network. The highest
hosting capacity for the illustrative distribution networks was obtained for the 3.7 kW single-phase
and 11 kW three-phase EV charging power.
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1. Introduction

The transportation sector accounts for the emission of greenhouse gases responsible
for global warming due to the use of fossil fuels. The increasing use of electric vehicles
(EVs) reduces the emission of carbon dioxide when the electricity comes from clean and
renewable energy sources [1-4]. The sale of EVs increased by 43% globally and 137% in the
European Union in 2020 [5]. During December 2020, almost half of the new passenger cars
registered in Sweden were fully electric or plug-in hybrid [6]. The increase in the share of
electric vehicles will increase EV charging in distribution networks.

This increase will result in an expected increase in energy and peak power consump-
tion [2,7]. The former is a challenge for the power generation side, while the latter is a
challenge for the power distribution side. The increase in peak power consumption and
other changes in consumption patterns will depend strongly on the charging pattern, which
remains one of the unknowns [1,8]. The largest impact on the power consumption will
occur when there is simultaneous charging of multiple EVs.

An alternative approach, independent of the actual charging pattern, is to estimate how
much charging is possible as a function of days, weeks, and years. This amount of charging
is referred to as the hosting capacity (HC). The hosting capacity is generally defined as
the amount of new power consumption or generation that does not risk other customers’
reliability or power quality [9-11]. This paper applies the hosting capacity approach to
new power consumption, specifically simultaneous EV charging in distribution networks.

EV charging can be single-phase or three-phase. Larger penetration of EV charging
can affect the distribution networks in different ways [12,13]. An increase in power demand
beyond the thermal capacity of cables, lines, or transformers will cause an overload [2,14],
which can result in accelerated ageing, component failure, or customers’ supply fuse to
blow. Other impacts caused by single-phase or three-phase chargers include harmonics,
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voltage unbalance, undervoltage, flicker or fast voltage fluctuations, and overvoltage in
rare cases of single-phase chargers [2,13,14].

There are similarities concerning grid impact between EV charging and solar pho-
tovoltaic (PV) units. Both solar PV and EV charging were not initially planned by the
distribution network operators (DSOs). Designing distribution grids that can cope with
large amounts of solar PV and EV charging is technically possible, but such grids will be
significantly more expensive than existing grids. Both solar PV and EV charging show
fast and largely unpredictable growth, especially at a local level. The rapid growth and
uncertainty result in several challenges to DSOs [12-15]. There is a need to determine the
ability of the distribution network to cope with further growth [12,15], in this case growth
in consumption due to EV charging. All impacts caused by EV charging on the distribution
network should be considered to estimate the hosting capacity [15].

EVs can be charged at the home (residential charging), workplace, or public charging
stations [16,17]. The charging behaviour will be a determining factor for the impact of
EV charging on the distribution grid. The most common time of charging for residential
customers is before work, around 8 am, and typically around 6 pm after arriving home
from work [18]. This increased charging of EVs at home will impact the distribution
network [19].

The uncertainties in EV charging have been addressed in hosting capacity studies by
using a stochastic or time-series method. A Monte Carlo based simulation for EV charging
assessment is proposed because of the stochastic elements it contains [20]. A Monte Carlo
based stochastic approach was used for solar PV hosting capacity estimation in [21]. The
method proposed and used in [21] is adapted for EV charging in this paper. The resulting
approach is applied to obtain the hosting capacity for EV charging of a number of existing
low-voltage networks in Sweden. The contributions and innovations of the study presented
in this paper are as follows:

e A stochastic method is proposed for estimating the hosting capacity of the distribution
grid for EV charging.

e The development of models to quantify the uncertainties associated with hosting
capacity estimation for EV charging.

e  The proposed method is non-specific and is applicable for estimating the EV charge
hosting capacity for any time of the day, week, and year. None or only limited
information of the charging pattern is needed to estimate the hosting capacity.

e  The planning risk taken is one of the inputs to the method. This allows the method
to be used in the trade-off between the risk of insufficient investment and the risk of
overinvestment (stranded assets).

e Application of the method to a number of existing distribution networks.

The paper is divided into six sections. Section 1 introduces the paper, and Section 2
presents the state of the art in stochastic hosting capacity estimations. Section 3 presents the
adaptation of the PV-HC stochastic method for EV charging estimation. Section 4 presents
the results, and their discussion is given in Section 5. Finally, the conclusion is presented in
Section 6.

2. Review on EV Stochastic Hosting Capacity

The hosting capacity estimation for EV can be performed using a deterministic, stochas-
tic, or time-series method [19]. Simple deterministic methods can be used to assess the
impact of either mean or maximum power consumption [14]. In addition, stochastic and
time-series models can be used to include some of the uncertainties associated with EV
charging and its grid impact [3,14,19].

Several EV charge hosting capacity methods using stochastic methods have been
proposed, including some of the uncertainties [3,7,10,12,16,17,19-22]. There are two types
of uncertainties, aleatory, and epistemic uncertainties [22]. Being aware of the difference
between these is important; A detailed description of these two types of uncertainties and
their application to solar PV hosting capacity is given in [21].
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A study was undertaken to quantify power quality problems due to EV charging
in [3]. A 3.7 kW EV was used with a Gaussian model for the harmonic currents. In [14], a
method was implemented using survey and measurement data. The voltage and conges-
tion indicators were applied for the charging cycle, mostly occurring between 6 pm and
10 pm. The hosting capacity for EVs was evaluated by considering the random distribution
of EVs among households in [23]. Single-phase charging power of 3.7 kW and 7.4 kW
was used for the study. Experimental results were applied in [19] with smart charging
aspects, considering phenomena including undervoltage. The stochastic analysis is recom-
mended to correctly quantify the likelihood and severity of EV charging in distribution
networks [19]. The approach in [24,25] quantifies the risk of overloading by modelling the
EV and customer loading with Poisson and Gaussian models. The presence of solar PV was
considered in that study as well. In [9], combined EV charging and solar PV is considered
with smart charging. It was shown that there is a small positive correlation between EV
charging and production from solar PV. A stochastic model for EV charging was developed
in [26]. In [27], a kernel distribution is applied to destination surveys. It was shown that
the charging location was the most critical variable and that EV hosting capacity is very
much restricted by the minimum voltage [27]. Charging time was modelled with a uniform
distribution and occurring between 6 pm and 9 pm in [27]. None of the above-mentioned
publications identifies the aleatory and epistemic uncertainties. Characterisation of the
probability distribution function from measurements was also not addressed in any of
the previous studies. Moreover, none of the studies develop a stochastic approach for EV
charge hosting capacity from a successful approach for solar PV. These gaps motivated the
approach to estimating EV charge hosting capacity presented in this paper.

Brief Description of Aleatory and Epistemic Uncertainties

The aleatory uncertainties emerge from the variables’ natural randomness and built-in
variability. Information on aleatory uncertainties can be obtained by statistical analysis
of measurement data. The uncertainty of the variables can be characterised by means of
probabilities or a probability distribution function [21,28]. Those can in turn be used as
input in stochastic studies where aleatory uncertainties affect the outcome.

The epistemic uncertainties emerge from the lack of knowledge or information on
a variable. The modelling of the variable is performed with either interval analysis or
possibilistic and evidence theory. Gathering more information or built-up knowledge on
the variable can reduce the variability [28]. Obtaining the data for the epistemic uncertainty
may take a long time and obtaining statistical information from measurements is often
not possible.

The application of the two types of uncertainties begins with recognizing them and
their influence. By distinguishing between the aleatory from the epistemic, appropriate
models can be developed and used for the stochastic hosting capacity approach.

In the context of EV charging, aleatory uncertainties are the voltage and consumption
before the connection of EV charging. Examples of epistemic uncertainties are the number
of customers that will charge their car simultaneously, their charging power, and the phase
to which the charger is connected.

3. Stochastic EV Charge Hosting Capacity Approach

The hosting capacity method used in this paper is adapted from the stochastic ap-
proach developed and applied in [21]. In [21], the approach was used to estimate the
hosting capacity of distribution networks for solar PV. The stochastic model used to es-
timate the hosting capacity in [18] used a probability distribution of the highest voltage
during the hours of the day and year with high production from solar PV. This paper’s
approach instead uses a probability distribution of the lowest voltage resulting during
those hours that EV charging is most likely to occur.

In [21], the method evaluated the combination of epistemic and aleatory uncertainties
during the time-of-day (ToD) from 10 am to 2 pm and the time-of-year (ToY) with the
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highest solar PV power production. The obtained voltage rise leading to an overvoltage
was due to solar power production during the sunny hours of the day and the year. EV
charging can take place at any time of the day, week, or year. Contrary to solar PV, there
is no defined ToD and ToY with EV charging. The approach developed for solar PV
in [21] contributes to the probability distribution of a voltage rise compared to the “highest
background voltage”. The “background voltage” is the voltage with the customer in a low-
voltage distribution network for zero local consumption and zero local production [29,30].
The background voltage used in the stochastic hosting capacity method for solar PV is the
highest background that can be expected during the sunny hours of the day and year. The
method adapted and applied to EVs causes a decrease compared to the lowest background
voltage. When applied to EV charge hosting capacity, the ‘background voltage’ to be used
in the stochastic hosting capacity method is the lowest value during the time of highest
consumption, and when EV charging is expected to take place [31].

Both methods, the one in this paper and [20], include uncertainties in estimating the
hosting capacity. Both epistemic and aleatory uncertainties associated with EV charging
are considered. The probability distribution of the worst-case voltage due to a magnitude
drop resulting from single-phase or three-phase EV charging is obtained.

3.1. Overall Stochastic Approach

The approach applied in this paper, treating aleatory and epistemic uncertainties
differently as in [21], is used to obtain the worst-case undervoltage values as a probability
distribution function (pdf). The worst-case undervoltage values are the minimum values
of the voltage calculations described in Section 3.2.

The fundamental assumption for the aleatory uncertainties entails that the probability
distribution functions (pdf) must be considered when there is high EV charging. High
charging occurs when many customers with EVs are charging. The likelihood of an
undervoltage occurring is highest for a combination of low background voltage and
high consumption.

The severe impact of epistemic uncertainties on the hosting capacity is underlined
by how many customers will purchase EVs, their charging location, and their charging
pattern. None of these is known beforehand. The possible locations and interval range of
EV charging for customers are evaluated in this paper. The overall approach is summarised
in the flow chart shown in Figure 1.

3.2. Lowest Background Voltage and Undervoltage

The voltage magnitude in three-phase low-voltage networks with a contribution of
solar PV was given in [21]. The customers’ lowest consumption and solar PV injection
were used in [21] to obtain the voltage rise. Using the equations in [21], Equation (1) is
formulated to estimate the voltage at location a due to a customer power consumption and
EV charging at location b [21].

U(a) = Up(a) + [Zu(a,b) x (~Lious (b) = Iev (b)) M

where Up(a) is the lowest background voltage, Z;¢(a, b) is the transfer impedance, Icons (b)
is the current at the customer during the highest consumption, and Iry (b) is the current
due to EV charging.
In Equation (1), the highest customer consumption and EV charging power are added.
It is also important to determine the lowest voltage occurring at the customer. In a dis-
tribution network with multiple customers, simultaneous EV charging at more than one
location is possible. All the contributions of EV charging are superimposed, resulting in
Equation (2).
Neust
U(a) = Up(a) + Y Zif(a,b) x (—leons(b) — Iy (b)) (2)
b=1
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Equation (2) is used in this study to obtain the probability distribution of the lowest
voltage due to EV charging. The obtained voltage, applying Equation (2) which is an
extension of Equation (1), is the worst-case undervoltage distribution for the customers.

Distribution network
(DN) input data
(From DN operator
or other sources)

A
Obtain DN data from the input data

DN Characteristics: Q, Imax, Loads, size of DS
Build the impedance matrix, transfer impedance
matrix and penetration of EV charging

e EV charging power

v
For customers
k=1:Number of customers with EV charging
(NEV)

or data samp
i=1:Nsample

Generate samples of Generate random samples
aleatory customer highest of EV background voltage
power consumption from from probability

probability distribution distribution

[ ]

NO

Does customer has
EV charging?

Select phases for
customer power
consumption and pre-
voltage i st NO
Is it Single Phase?
Select (random) phases for
customer power consumption,
Calculate the voltage for [ |Select random phases of customer cHsiomers lbackground
customers without EV power consumption and yoltage
charging background voltage
Inject three phase current in
Inject single-phase EV charging in from EV charging
any of the three phases ‘
Calculate after-EV charging-
Calculate the after-EV charging- voltage for customers
voltage for customers

NO

Is i = Nsamples?

Select. Sort and Store the worst-case
voltages (minimum) results

'

Select Performance Index and
Determine Hosting Capacity

NO

Figure 1. The flow chart for the stochastic hosting capacity approach for EV charging in a distribution network.
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3.3. Uncertainties

In this paper, the adapted stochastic approach similar to [21] considers both aleatory
and epistemic uncertainties.

The aleatory uncertainties considered are the background voltage and highest cus-
tomer power consumption. They are modelled with their probability distribution functions
(pdf). The difference with those applied in [21] is what matters most and how they are
obtained. The background voltage obtained is the distribution of the lowest value during
the time of highest consumption. The distribution of such values is characterised and a
goodness-fit-applied to obtain the pdf, in a similar way as in [26].

The epistemic uncertainties considered are phase-type and connection (single-phase
or three-phase), EV charger size, customer location with EV charging, and the number of
customers charging simultaneously. Models are applied to estimate future occurrences. The
data needed are obtained based on the possibilities, interval, or evidence of the occurrence.
The possible future cases, possibilities, and interval ranges that can occur are applied in the
stochastic approach.

3.4. EV Charging Power Size

The hosting capacity is first estimated for the charging power of 3.7 kW single-phase
and 11 kW three-phase, corresponding to a 16-A fuse. The 3.7 kW and 11 kW are mentioned
in [32] as the most popular charging power sizes and are also used in [9,32].

Other single-phase charging power sizes of 4.6, 5.75, 8, and 9.2 kW have been studied.
The three-phase charging power sizes of 13.8,17.3, 24.2, and 27.6 kW are applied too. The
two sets of single-phase and three-phase charging power sizes correspond to 20, 25, 35,
and 40-A fuse.

3.5. Study Distribution Networks

Two illustrative distribution networks have been used in this paper, with 6 and
83 customers. A 100 kVA, 10/0.4 kV, and Dyn11 (vector group) transformer with a 4%
impedance supplies power to the 6-customer network [33]. The 83 customers are supplied
by a 500 kVA, 10/0.4 kV, Dyn11 transformer with a 4.9% impedance [21].

The customers in both distribution networks are supplied with three-phase cables,
including the 10-mm? service cable between the last cable cabinet and the customer. The
service cable can supply 13 kW single-phase and 38 kW three-phase power.

3.6. Applied Highest Consumption and Lowest Background Voltage

The approach requires the input of the highest customer consumption and lowest
background voltages. Measurements and DSO given data on consumption used in [29,34]
have been applied in this paper. Measurements from 8 distribution transformers were
used to obtain a distribution of the highest consumption per customer: transformers with
4-8 customers for 100 kVA and 76-94 customers for 500 kVA. The obtained probability
distribution of the highest consumption per customer is shown in Figure 2.

The lower value obtained for both transformer sizes is 1 kW per phase. The upper
value is higher for the 100-kVA transformer. The lower and upper limits of each transformer
size are applied as input data for the hosting capacity estimation. The highest consumption
per customer obtained and applied for the 6-customer network is in the range of 1-2.2 kW.
It is 1-1.5 kW for the 83-customer distribution network. An approach is applied to the
voltage measurements for the distribution network in Northern Sweden, also used in [29].
The daily lowest 10-min voltage measurement is obtained for a distribution network with
6 customers and one with 83 customers. These are voltages as measured at the low-voltage
side of the distribution transformer. The results for 365 days of measurements during 2017
are shown in Figure 3.
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Figure 2. The highest consumption per customer per phase for 100 kVA and 500 kVA rated transformers.
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Figure 3. The measured background voltage for the 6-customers (100 kVA, top) and 83-customers
(500 kVA, bottom) distribution network for 365 days of 2017.

The daily lowest voltages for the 6-customer distribution network show higher values
during the summer and lower values in winter. The 83-customer network shows a few
higher values in winter. In addition, the lowest values for an additional 31 transformers
were obtained. The method used in [26] for the characterization of probability distribution
functions was also applied to all the obtained measurements. The generalised extreme
value (GEV) distribution was the one that most often fitted best to the background voltage
that should be used for EV charging. The same was observed for the background voltage
used for solar PV in [29]. The obtained lowest background voltage for the 6-customer
distribution network is in the range of 230-234 V and the range of 232-235 V for the
83-customer distribution network. The parameters for the GED distribution used for
the background voltage in the hosting-capacity estimation of the networks presented in
Section 3.5 are shown in Table 1.
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Table 1. The background voltage input parameter for the characterised GEV pdf for the 6-customers
and 83-customers distribution networks was applied to estimate EV charge hosting capacity.

Distribution Network 6-Customers 83-Customers
k —0.3228 —0.0309
Sigma (o) 1.1491 0.3250
mu (p) 231.55 232.88

In Table 1, k is the shape parameter of the GEV distribution. The value of k also
describes any of the three types (Type 1: Gumbel, Type 2: Fréchet, or Type 3: Weibull)
of a GEV distribution. The GEV in Table 1 is a Weibull distribution function. Sigma (c)
describes the scale parameter (standard deviation), and mu (u) describes the location
parameter of the GEV distribution (mean). The general representation of the GEV with
location parameter (i), scale parameter (), and the shape parameter (k # 0) is given by
Equation (3).

_1 _1-1
1 x—u\ X—Hu k
== —([1+k | —— 1+k
y (x) <U)exp<<+(0) ><+(U> ) )
The GEV is described as a Gumbel distribution for a zero value of k, Fréchet for k
greater than zero, and Weibull for k less than zero [35].

3.7. Hosting Capacity Calculation, Limit and Performance Index

The EV hosting capacity in this paper refers to the number of customers connected to
an LV distribution network that can charge their EV simultaneously without causing the
voltage magnitude to go below the undervoltage limit. The hosting capacity is exceeded
when at least one of the customers’ voltages is below the limit.

The stochastic approach initially results in a probability distribution of each customer’s
worst-case voltage magnitude. To estimate the hosting capacity, a performance index and a
limit are needed. The 10th percentile of the worst-case voltage distribution is used in this
paper as a performance index, and 90% of the nominal voltage is used as a limit.

Distribution network operators often consider planning risk in one way or another
for their networks. What is typically not explicitly known is the percentage risk they take,
which, in mathematical terms, would be a percentile. The 10th percentile voltage values
are used in this paper to estimate the hosting capacity for EV. This corresponds to what
could be called a “planning risk” of 10%. An illustration of the approach described in
Sections 3.1-3.6 is shown in Figures 4 and 5 for a 6-customer distribution network. The
implementation is done with the following;:

The 6-customer distribution network input data and source impedance.

The obtained background voltage of 230234 V obtained in Figure 3 and GEV pdf was
applied (k = —0.3228, sigma = 1.1491, mu = 231.55).

The EV charging power of 4.6 kW single-phase [31].

The highest power consumption per phase of 1-2.2 kW and its pdf (uniform).

The interval and the possible number of customers with EV chargers applied. The
interval range is from 1 to 6 customers (the total number of customers).

All possible combinations and locations from 1 customer to 6 customers are assessed.
The customers can install the charger in any of the three phases.

Monte-Carlo is applied (100,000 to 1,000,000). The probability distribution of the
customers’ voltage magnitude is obtained.
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Figure 5. The 10th percentile voltage magnitude for the six customers is obtained from Figure 4
(colored dots) and the 90% undervoltage limit (solid red line).

The probability distributions for the voltage with the customers in the 6-customer
network with EV chargers are shown in Figure 4.

In Figure 4, the horizontal blue line (solid and dotted) crossing the distributions
indicates the 10th percentile. The vertical red line crossing the distributions indicates the
probability that the voltage is less than the 90% undervoltage limit. Estimating the hosting
capacity involves repeating the calculation of Figure 4 from one customer to the maximum
(six). The 10th percentiles of the voltage (the performance index used), as obtained from
Figure 4, and the limit are used to obtain Figure 5.

The results in Figure 5 include the possibilities of having 1 customer charging an EV up
to all the customers (6) charging simultaneously. The blue vertical lines (solid and dotted)
in Figure 5 show the highest number of customers charging simultaneously without any of
the voltages falling below the undervoltage limit.

When one customer is charging, the 10th percentile values of the customers are above
90%. The index does not violate the limit. The increase in the number of customers
charging shows the 10th percentile approaching 90%. The undervoltage limit is violated
for 6-customer charging. At most, 5 customers can charge without the limit being violated.
The hosting capacity in this case is 5 customers (83% of the total number of customers). The
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estimation procedure has been repeated for different distribution networks and different
charging powers. The results are shown in Section 4.

4. EV Hosting Capacity Results

The approach in Section 3 and the steps outlined were applied to the six-customer and
83-customer distribution networks described in Section 3.

In the first step, the hosting capacity for single-phase EV simultaneous charging
was assessed. In the second step, the assessment was performed for three-phase EV
charging. Furthermore, the influence of the background voltage, highest customer power
consumption, and the planning risk on the hosting capacity were also evaluated. The
results obtained for the stochastic hosting capacity results applied to EVs are given in
this section.

4.1. Single-Phase Hosting Capacity

The capacity of the six-customer and 83-customer distribution networks for single-
phase EV charging of different power is shown in Figure 6.
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Figure 6. Single-phase hosting capacity results for 3.7, 4.6, 5.75, 8.05, 9.2 and 11.5 kW: (a) 6-customers
distribution network; (b) 83-customers distribution network.

The results in Figure 6a show that for EV charging power of 9.2 and 11.5 kW, none of
the six customers can charge their EV. The hosting capacity is zero customers. The hosting
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capacity is one customer for 8.05 kW charging power and becomes six customers when the
charging power is 3.7 kW.

In Figure 6b, only a few customers can charge simultaneously with 11.5 kW. The
hosting capacity is 5% (four customers). The hosting capacity increases to 8% at 9.2 kW
charging power. It is 52% for the charging power of 3.7 kW. Over half the customers can
have single-phase EV chargers with 3.7 kW.

4.2. Three-Phase Hosting Capacity

The three-phase hosting capacity for the six-customer and 83-customer distribution
networks considering different EV charging powers are shown in Figure 7.
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Figure 7. Three-phase hosting capacity results for 11, 13.8, 17.25, 24.15, 27.6 and 34.5 kW:
(a) 6-customers distribution network; (b) 83-customers distribution network.

The results in Figure 7 show a similar pattern for single-phase charging, whereby more
customers can simultaneously charge for smaller charging power per customer. The current
per phase is the same for the single-phase and three-phase charging powers considered,
but the hosting capacity is generally higher for three-phase charging. However, there is
no clear relation between the two. Separate calculations are needed for single-phase and
three-phase charging. The three-phase hosting capacity is one-sixth for the six-customer
distribution network, at 34.5 kW of charging power needed. It is 14% (12 customers)
for the 83-customer distribution network. In the six-customer distribution network, all
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customers can charge their EV simultaneously for 13.8 kW and below power needs. The
hosting capacity for the 83-customer distribution network is 73% for the 11 kW three-phase
charging power need.

4.3. Influence of Lowest Background Voltage

The obtained measured background voltage has been changed by 1.25%, 2.5%, 3.75%,
and 5% of the nominal voltage. The GEV distribution function, which characterised mea-
surements, was fitted to the increased voltage measurements. The input lowest background
voltages applied to assess their influence on the hosting capacity are given in Table 2.

Table 2. The change in background voltage input parameters showing the standard deviation and
mean for the GEV with the same shape (k = —0.0309).

Change in Background Voltage U (%) GEV Sigma GEV mu
—A5 0.3087 221.24
—3.75 0.3128 224.15
—25 0.3169 227.06
—A1.25 0.3209 229.97
0 (base case) 0.3250 232.88
+1.25 0.3291 235.79
+2.5 0.3331 238.70
+3.75 0.3372 241.61
+5 0.3412 24452

The stochastic hosting capacity assessment, performed for the different background
voltages shown in Table 2, resulted in Figure 8.
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Figure 8. EV hosting capacity change for single-phase (3.7 kW) and three-phase (11 kW) charging
with change in the lowest background voltage from +5% to —5%.

Again, the behaviour is similar for single-phase and three-phase charging, with
the hosting capacity being generally higher for three-phase charging. Compared to the
reference case, a decrease of 5% in the lowest background voltage results in a large decrease
in hosting capacity. A similar increase in background voltage results in the hosting capacity
reaching 100% of customers for both single-phase and three-phase charging.

4.4. Influence of Customer Highest Consumption

The highest customer consumption is changed for the 83-customer distribution net-
work. The consumption ranges of 0-0.5, 0.5-1, 1.5-2, and 2-2.5 kW are applied. A stochas-
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tic approach is applied for each consumption range in addition to the reference case of
1-1.5 kW for single-phase and three-phase EV charging. The results are shown in Figure 9.
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Figure 9. The 83-customers distribution network three-phase hosting capacity for EV charging power
11,13.8,17.25, 24.15, 27.6 and 34.5 kW.

The customers” highest consumption also has a significant impact on the hosting
capacity. The smallest consumption range of 0-500 W in Figure 9 caused an increase in
the hosting capacity by 36% for three-phase and 65% for single-phase EV charging. As
the highest consumption is increased, there is a corresponding decrease in the hosting
capacity. The hosting capacity decreases by 69% for single-phase EV charging and 44% for
three-phase EV charging.

4.5. Influence of Planning Risk

The study applied before used the 10th percentile of the lowest voltage as a perfor-
mance indicator. This can be interpreted as a 10% planning risk. The effect of selecting
the 1st, 5th, 15th, or 20th percentiles on the hosting capacity for EV charging was studied.
The results for single-phase (3.7 kW) and three-phase (11 kW) charging power is shown in
Figure 10.
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Figure 10. The planning risk (percentile) impact on the EV charge hosting capacity for the
83-customers distribution network.
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The 10th percentile in Figure 10 is the reference case. The figure clearly shows that
stricter planning risk decreases the hosting capacity. There is an 18% and 49% decrease in
the EV hosting capacity for three-phase and single-phase when the planning is reduced
from 10% to 1%. Higher planning risk increases hosting capacity, but the effect is lower
than for lower-risk, especially three-phase charging.

The planning risk has a bigger influence on the single-phase hosting capacity (blue line).

5. Discussion

The EV charge hosting capacity in Section 4 estimates how many simultaneous cus-
tomers can charge in a distribution network, considering undervoltage as the limiting
factor. The method is applicable for any period of interest for the DSO and can bring
out the bottlenecks for EV charging that could instill investment for future growth. The
method presented can be utilized for making planning decisions regarding estimated
hosting capacity without detailed knowledge of the charging patterns of the customers.
DSOs typically take a certain risk when planning distribution networks. The method can
also be used with varying planning risks shown in this paper, to make a trade-off between
the risk of bad voltage quality (insufficient investment) and stranded assets (too much
investment). The planning risk is essential, and efforts are needed to ascertain what the
DSOs apply or a range of values to streamline the approach.

The presented results show that, for both example networks, the hosting capacity is
higher for three-phase than for single-phase charging. It was also found to vary a lot for
the range of the charging powers expected to appear in the coming years. There is a need
to extend the studies to more distribution networks to verify the observations in this paper.
The adapted PV hosting capacity method has been applied to two illustrative distribution
networks. More distribution networks should be studied to obtain more general trends.

The method can be applied as an extension for calculating the hosting capacity as
a function of time of day, week, or year. There is a need to apply the method for such
other applications. In that way, the best periods for charging can be identified and used in
designing smart charging mechanisms.

There are some challenges with the method and uncertainties in the output (not
to be mixed up with the uncertainties in input). The results are stochastic, and their
interpretation can often lead to uncertainties. It was also shown that both background
voltage and consumption have a big impact on the hosting capacity. However, these are
often not known and require detailed measurements. Data collection becomes important
in order to estimate the hosting capacity accurately.

Fast charging in public with electric buses and trucks has not been assessed in this
study. These are expected to be connected to the MV network and will have their main
impact there. Further studies are needed for fast (public) charging, charging of electric
buses and electric trucks. However, similar methods as applied in this paper can be applied
for such studies.

The approach in this paper has considered the undervoltage phenomenon. Stochastic
methods for estimating the hosting capacity of transformer and feeder overload are also
needed. Their addition to the method proposed in this paper can inform the DSO of the two
phenomena that are most likely to limit EV charging penetration in distribution networks.

6. Conclusions

A stochastic approach has been proposed and applied to evaluate distribution net-
works” hosting capacity for EV charging. An important application of the approach is
relevant to future planning and investment decisions in distribution networks. The ap-
proach is non-specific and can be used for any time of day, week, or year, without detailed
knowledge of the charging patterns.

The results obtained by applying the method to two existing low-voltage networks
showed that the EV charge hosting capacity is sensitive to the lowest background voltage,
highest power consumption, and planning risk. It is recommended to apply the method to
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more distribution networks, including medium-voltage networks, and to commence data
collection to obtain input for stochastic hosting capacity studies.
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