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Abstract: Due to the predicted rise of Unmanned Aircraft Systems (UAS) in commercial, civil, and mil-
itary operations, there is a desire to make UASs more energy efficient so they can proliferate with ease
of deployment and maximal life per charge. To address current limitations, a three-tiered approach
is investigated to mitigate Unmanned Aerial Vehicle (UAV) hover time, reduce network datalink
transmission to a ground station, and provide a real-time framework for Sense-and-Avoidance
(SAA) target classification. An energy-efficient UAS architecture framework is presented, and a
corresponding SAA prototype is developed using commercial hardware to validate the proposed
architecture using an experimental methodology. The proposed architecture utilizes classical com-
puter vision methods within the Detection Subsystem coupled with deeply learned Convolutional
Neural Networks (CNN) within the Classification Subsystem. Real-time operations of three frames
per second are realized enabling UAV hover time and associated energy consumption during SAA
processing to be effectively eliminated. Additional energy improvements are not addressed in the
scope of this work. Inference accuracy is improved by 19% over baseline COTS models and current
non-adaptive, single-stage SAA architectures. Overall, by pushing SAA processing to the edge of the
sensors, network offload transmissions and reductions in processing time and energy consumption
are feasible and realistic in future battery-powered electric air transportation systems.

Keywords: edge-centric; edge computing; electric transportation; energy efficiency; Sense-and-
Avoidance (SAA); Unmanned Aerial Vehicle (UAV)

1. Introduction

As battery technology has become more efficient and more conducive to confined Size,
Weight, and Power (SWaP) constraints, Unmanned Aerial Vehicles (UAV) are becoming
of increasing interest for research opportunities and commercialization [1,2]. The total
number of UAVs being used for commercial, civil, and military applications is expected to
dramatically increase over the next two decades [3]. In particular, this paper is focused on
small- or medium-sized battery-powered UAVs.

UAVs are typically referenced as a subsystem of a greater Unmanned Aircraft System
(UAS). A UAS usually consists of one or more UAVs, a Ground Control Station (GCS),
and a communications link between the ground and the vehicle(s). Both the United States
Federal Aviation Administration (FAA) and Department of Defense (DoD) have adopted
the term UAS in their unmanned system roadmaps [4,5]. This nomenclature remains
consistent within other governing bodies such as the European Aviation Safety Agency
(EASA) [6]. This paper will use the term UAV when referring to the unmanned platform
and UAS when referring to the system as a whole.

Over the past few years, the maturity of battery-powered UAVs has enabled the
practical deployment of UASs. This widespread expansion opens up new commercial and
civil applications such as merchandise delivery but also presents a need for innovation
to address the growth of large-scale deployment and densely populated fleet operations.

Electricity 2021, 2, 110–123. https://doi.org/10.3390/electricity2020007 https://www.mdpi.com/journal/electricity

https://www.mdpi.com/journal/electricity
https://www.mdpi.com
https://orcid.org/0000-0001-5274-0252
https://doi.org/10.3390/electricity2020007
https://doi.org/10.3390/electricity2020007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electricity2020007
https://www.mdpi.com/journal/electricity
https://www.mdpi.com/article/10.3390/electricity2020007?type=check_update&version=2


Electricity 2021, 2 111

Operationally, an unmanned platform brings many enabling benefits, such as extending
operation beyond human physiological limitations and operating within contested, hostile
environments. One additional complexity is assuring operational success and safety while
maximizing flight time and time between battery charges.

For UAVs to be utilized practically and safely in the commercial sector, UAVs need to
be made more efficient and robust. For example, in a package delivery service, maximum
profitable flight time must be realized. Work is being done currently to solve the large
scale optimization problem this presents [7,8]. Research has been initiated on efficient path
planning for UAV flight [9,10]. Flight path planning is certainly an area for efficiency opti-
mization, but is only one piece of the efficiency problem. Some work has been completed
to optimize specific instances of an implementation [11] of a particular UAV, but little work
has been done to generalize and characterize UAV architectures for subsystem improve-
ments. While all these aforementioned efforts are meaningful in creating an energy-efficient
UAS, there is a need to make the UAV on-platform processing more efficient by novel
methods. This research seeks to fill that gap with the contributions presented in this paper.

One such on-platform system to consider for efficiency improvement is the Sense-
and-Avoidance (SAA) system. A SAA system is designed to mimic and replace human
vision, perception, and cognition on-board within a UAS. Current UAS architectures as
surveyed by researchers in [12] are not designed to address energy efficiency or power
consumption. Many authors [13–17] have made strides in advancing performance, but
real-time performance has not been coupled with power efficiency for realistic usage on
a battery-powered UAV. Current state-of-the-art SAA systems involve serial operations
within a single-stage pipeline or offloading large amounts of data for off-platform process-
ing. A prototype framework created by the authors addresses some of these limitations
which will be reviewed in Section 2 of this paper utilizing experimental methods. Fur-
thermore, within the overall UAS prototype architecture, the prototype subsystem design
enables real-time, efficient, on-platform object detection and classification.

The structure of this paper is as follows. Section 2 describes the novel energy-efficient,
edge-centric approach to address power consumption within Sense-and-Avoidance sys-
tems on electric UAVs. Section 3 describes experimental test results achieved within the
prototype architectural framework and implications. Section 4 concludes the results of this
paper and suggests future work.

2. System Architectural Framework

This section details the key architectural elements of the SAA system prototype frame-
work. To illustrate the SAA approach, a prototype architectural framework was designed
and developed. Processing is pushed logically close to the sensor to minimize bandwidth
latency and wasted computation cycles in an effort to reduce overall power consumption
and increase throughput. Furthermore, object Detection and Classification Subsystems
are introduced within the data flow pipeline (as in Figure 1) and are designed to perform
these operations in parallel, resulting in increased image frame throughput to support
real-time operations. The Classification Subsystem utilizes a dispatcher design pattern to
perform efficient target classifications in parallel on efficiently-sized full-resolution Regions
of Interest (ROI).

An experimental methodology was employed for this research. By first developing an
experimental prototype, scenarios and tests with various datasets and classifier models
could be subsequently be executed. Repeatability was a key driver in choosing this research
methodology as well as the ability to collect real-world results, make observations, perform
analysis, and report resultant data.
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Figure 1. System architecture data pipeline.

Generic Commercial-Off-The-Shelf (COTS) hardware was used to rapidly prototype,
but further performance and power efficiency gains would likely be possible with more
specialized hardware, such as dedicated neural cores and low-power processors.

2.1. Overall Architecture

The overall SAA architecture consists of four major subsystems. Sensor Emulator,
Detection, and Classification are three subsystems that reside on-platform; the fourth
would remain off-platform, resembling a traditional GCS. As this is a prototype in con-
tinued development, wired or wireless Local Area Network (LAN) connections are used
to simulate communication between the subsystems. The three on-platform subsystems
communicate via a wired Ethernet connection, while communication with the off-platform
subsystem is connected via a 2.4 GHz wireless Ethernet link.

In Figure 2, the overall prototype arrangement and data flow are shown. In lieu of
actual sensor hardware, raw image files from a representative sensor are fed from the Sensor
Emulator Subsystem into the Detection Subsystem to be processed using conventional
image processing and machine vision techniques. Once a ROI is identified and produced
to contain a potential target, it is sent to the Classification Subsystem to be processed.
Sequentially, it sends a compressed version of the original 4K frame to the GCS for off-
platform viewing. Once the Classification Subsystem classifies the object within the ROI
using a Deeply-Learned Convolutional Neural Network (CNN), it forwards the ROI with
the associated classifier metadata to the GCS via a wireless datalink. The GCS correlates
the original frame from the Detection Subsystem with the ROI and classifier metadata from
the Classification Subsystem for Artificial Intelligence (AI)-enhanced viewing.
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Figure 2. Top-level system diagram.

The prototype has been designed and assembled using ordinary COTS hardware.
This has enabled rapid prototyping and experimentation at a low cost. Model details of
the hardware used are listed in Table 1. These development computers, coupled with a
wired/wireless router, serve as the simple prototype hardware. Wired connections simulate
inter-subsystem connections present on-platform, while wireless connections are utilized to
simulate the datalink to the ground. The network connections of the prototype are detailed
in Figure 3.

Table 1. Description of commercial hardware.

Item Description

Laptop (x2) HP Omen X 17-ap010nr
Network Switch/Router Linksys EA6350 AC1200

Figure 3. Prototype network diagram.
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2.1.1. Sensor Emulator Subsystem

A large data set of 4K images collected from a representative camera is able to be
played back through the framework via the sensor emulator. This allows for experimenta-
tion with repeatable sequence of frames for simple comparison. These frames are sent to
the Detection Subsystem as raw binary data and ingested for detection processing.

2.1.2. Detection Subsystem

The Detection Subsystem, as shown in Figure 4, utilizes classical computer and ma-
chine vision algorithms for object detection. A custom detection algorithm was developed
and optimized for clear or gray skies with minimal background clutter. This algorithm
performs object detection and segments a small ROI of 20 × 20, 50 × 50, 100 × 100, or
200 × 200 pixels, depending on the target size and distance. This small ROI will be sent to
the Classification Subsystem for target classification. When a ROI is identified, the original
full image frame is compressed and sent wirelessly to the GCS.

Figure 4. Detection subsystem block diagram.

2.1.3. Classification Subsystem

The Classification Subsystem ingests ROIs and uses a multi-threaded dispatcher mech-
anism to rapidly perform target classification of each received ROI. Target classification
is accomplished by performing inference using a Deeply Learned CNN. This network is
able to classify the small ROI quickly, accurately, and efficiently by limiting the classifier to
a comparatively small area of the original image. This differs from very fast and mature
CNNs such as Single Shot Detector (SSD) [18] and You Only Look Once (YOLO) [19],
in that the classification portion is further reduced to a single frame and not a sliding frame
window. Once an ROI is classified, it is sent to the GCS via a wireless datalink along with its
associated inference metadata. These metadata contain the inference probability, classifier
label, timestamp, originating camera number, ROI dimensions, and (X,Y) location of the
ROI within the original image.

Figure 5 shows the functional decomposition of this Classification Subsystem. The
classifiers were trained and validated with a dataset of ROIs from representative cameras.
The neural networks were created and optimized using TensorFlow and Keras. Once the
desired performance was achieved, the networks were exported as protobuf files (models)
for later use within the framework. These models are ingested at runtime for deployed use
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in the Classification Subsystem. An example structure of how a classifier network might be
designed for this construct is shown in Figure 6.

Figure 5. Classification subsystem block diagram.

Figure 6. Convolutional neural network structure.

2.1.4. Ground Control Station

The GCS exists in the prototype to serve as an AI-enhanced display. As compressed
frames, ROIs, and associated metadata are received at the GCS, and they are correlated
using timestamps and spatial coordinates. A high-quality ROI is overlaid on a low-quality,
compressed full frame originating at the spatial-temporal coordinates within the video and
presented with the classification metadata.

3. Experimental Tests and Discussion

The experimentation was performed using the hardware and network setup described
in Figure 3. Figures 2, 4 and 5 show the notional overall sequencing and data flow through
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each of the subsystems within the prototype framework. Two different deeply learned
neural networks were created, trained, and validated to test the edge cases (20 × 20
and 200 × 200) prescribed in the Classification Subsystem architecture. Training and
validation data of three different classes was supplied (aircraft, balloon, and bird); therefore,
a classification result will consist of three different probabilities mapping to these categories.

Furthermore, presented are baseline results using Microsoft Custom Vision [20] classifier
models in Table 2. These models were created by uploading training images and exporting a
model to be used within this framework. There is minimal insight into the overall arrangement
of the underlying network, but the results serve as a baseline comparison.

4K test imagery of aircraft at varying distances was captured with representative
sensors located on the ground aimed towards the departure end of an active runway.
Specific test cases were targeted from this data set while collecting processing time and
classifier accuracy results.

Table 2. Baseline Microsoft custom vision models.

Network Design Input Image Detection Classification

Model
Dimensions

# of Neurons Model Size
(MB)

Input File Size
(MB)

Resolution Processing Time (s)
over 50 run average

Processing Time (s)
over 50 run average

Accuracy
(aircraft%,

balloon%, bird%)

200 × 200 N/A 5 0.0336 200 × 200 0.2 0.277 53, 23, 24
200 × 200 N/A 5 39.5 4208 × 3120 N/A 1.22 53, 23, 24

3.1. Proposed Edge-Centric Two-Stage Adaptive Detection-Classification Approach

As described in the previous section, the Detection Subsystem utilizes a classical
OpenCV object detection technique. The Classification Subsystem uses optimized classifiers
trained with segmented images to match the intended input ROI size. These subsystems
work in concert to enable real-time target classification that can support approximately
three frames per second in the framework. Using solely OpenCV object detection methods,
without a Classification Subsystem in the data flow pipeline, eliminates the ability to
identify a target. Furthermore, a full 4K resolution frame that was determined to contain
one or more targets cannot be sent to the Classification Subsystem for processing and
maintain real-time capability and accuracy of a smaller, focused classifier. Referring to
Table 3, a 4K image processed through the Classification Subsystem took much longer to
process. At this delayed processing rate, the architecture could not keep up with the sensor
frame injection rate. This also becomes impractical from a power consumption standpoint.

Table 3. Custom deep learning models.

Network Design Input Image Detection Classification

Model
Dimensions

# of
Neurons

Model Size
(MB)

Input File Size
(MB)

Resolution Processing Time (s)
over 50 run average

Processing Time (s)
over 50 run average

Accuracy (aircraft%,
balloon%, bird%)

200 × 200 40,551 0.355 46 4208 × 3120 N/A 1.06 58, 20, 22
200 × 200 40,551 0.355 0.0336 200 × 200 0.2 0.163 77, 11, 12
20 × 20 65,475 0.552 0.000983 20 × 20 0.2 0.141 77, 11, 12

In Table 3, row one shows the result of a full 4K image being downsampled and
then inputted into the 200 × 200 model. This takes 1.06 s and has an accuracy of 58%.
Conversely, in row two, a 200 × 200 ROI is first produced by the Detection Subsystem and,
instead of being downsampled, is then inputted into the 200 × 200 model. The processing
time is 0.163 s and achieves an improved accuracy of 77%. This represents about a 19%
improvement in accuracy by avoiding the downsampling, while at the same time reduce
the processing time from 1.06 s to 0.163 s. An alternative approach is to transmit the entire
4K image off-platform for processing where there are little processing constraints. This
approach, however, not only increases data transmission power consumption unnecessarily,
but also further increases processing latency.
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Liu et al. [21] described the typical operating speed for a piston UAV to be between
47 and 52 m/s. Ostler et al. [22] determined, after flight testing a small electric UAV, the
typical speed to be around 15 m/s. In a typical operating environment for a UAV, and
depending on airspace class, oncoming manned aircraft could be traveling as fast as 250
Knots-Indicated Air Speed (KIAS) or 128 m/s. Ground speeds and closure rates could be
even faster accounting for winds aloft. Given these basics speeds, a typical vehicle could
travel as much as 128 m, or approximately 420 ft., in a second. One can see these conditions
could dictate the sensing UAV might have to stop forward flight to avoid a collision if the
hazard is not spotted at sufficient distance, or if processing cannot occur quickly enough.
Figure 7 shows the comparison of two operating conditions, with and without sufficient
processing, to support continuous forward flight. One second of hover time is used as an
approximation of target classification processing time based on the results in Table 3.

Based on the processing time for both approaches in Table 3, a reduction of classifica-
tion processing time of about 40% was realized when using the Two-Stage Adaptive ap-
proach.

Figure 7. Flight profile comparison.

Another benefit of this distributed subsystem approach is multiple targets can be
detected from a single image frame. Each target will have a ROI segmented and sent to
the Classification Subsystem to be processed in parallel. Each ROI will have the original
resolution maintained with no compression or downsampling occurring. This retains
maximum fidelity and image detail in the ROI provided to the Classifiers, while non-
critical portions of the image are compressed for GCS use. Compressing images prior to
off-platform transmission reduces power required to transmit large 4K frames.

3.2. Parallel Multi-Size Classifier Approach

In addition to utilizing a Two-Stage, Adaptive, Detection-Classification approach, a
dispatched multi-sized classifier is used within the Classification Subsystem. A dispatcher
design pattern is used to allow multiple classifiers to be initiated and run in parallel. This
allows for multi-target tracking and classification in congested air traffic environments.
Using the multi-size approach increases the speed at which target classification can be
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applied. This method is effective by supplying a small, focused ROI, and not examining
the entire 4K frame. This reduces overall classification processing time by a factor of
approximately six while still increasing accuracy by roughly 19%, as shown in Table 3.
When working in conjunction with the Detection Subsystem, approximately three frames
per second can be processed. This is critical for practical applications involving battery
powered UAVs. A faster process operating on a small ROI allows for the earliest possible
classification and maximum time for avoidance maneuver. This also enables a tailored
avoidance maneuver based on the target class and its anticipated flight path. This permits
the UAV to have maximum steady-state forward flight and minimizes unnecessary course
corrections and the associated power consumption. Using the collected results in Table 3,
the optimized 20 × 20 and 200 × 200 models outperform the baseline models in Table 2,
in both processing time and accuracy.

Performing target classification on a very small ROI is feasible on a battery-powered
UAV as presented in Figure 7 and Table 3. This approach using small, modular, compact
neural networks is a more deployable architecture for small battery-powered UAVs with
very limited power. There is minimal processing overhead to classify a small ROI. In the
case of both 20 × 20 (e.g., Figure 8) and 200 × 200 (e.g., Figure 9) ROIs, these can be
segmented by the Detection Subsystem and processed by the Classification Subsystem
to maintain throughput of around three frames per second. Increasing the ROI size from
20 × 20 to 200 × 200 increases average processing time by only less than 20 ms. Using a
4K image directly without the Detection Subsystem is not feasible based on experimental
results in the first entry in Table 3. This approach is too slow to keep pace with realistic
sensor frame rates and support continuous forward flight.

Figure 8. 20 × 20 region of interest (ROI).
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Figure 9. 200 × 200 ROI.

3.3. Implications on Power Efficiency and Consumption

The architecture described here allows for real-time target classification by reducing
the processing time to allow for continued flight while processing occurs. To illustrate this
fact, consider the two following scenarios presented in Figure 10.

1. The first scenario demonstrates a Non-Adaptive Classification Approach without
a Detection Subsystem in which a UAV is in forward steady-state flight and the
on-board sensor sends a 4K image frame to have target classification applied. This
process takes 1.06 seconds according to Table 3. During this processing delay, the
UAV must stop forward flight and hover to avoid any catastrophic collisions. Once
the target is classified, the UAV can resume forward flight until the next sensor frame
is presented for processing.

2. The second scenario demonstrates the proposed Edge-Centric, Two-Stage, Adaptive
Detection-Classification Approach in which a UAV is in forward steady-state flight
and the on-board sensor is sending 4K frames to the Detection Subsystem for pro-
cessing. Once a target is detected in a frame, a ROI is presented to the Classification
Subsystem for target classification processing. According to Table 3, this process takes
under 200 ms (actual calculated averages between 141 ms and 163 ms depending on
ROI size). While this processing is occurring, the UAV continues forward flight and is
not required to stop to hover.
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Figure 10. Flight time scenarios.

Some assumptions are made to illustrate the approach within a limited scenario to
scope and simplify computations:

1. Instantaneous acceleration and deceleration. In other words, power consumption is as-
sumed to be equal to steady-state levels during periods of deceleration and acceleration.

2. Altitude is five meters.
3. No wind or GPS drift requiring course corrections.
4. Payload is considered negligible during hover.
5. Approximately three frames per second can be processed by the Classification Sub-

system and maintain real-time operations.
6. UAV-specific flight characteristics and speeds are assumed to match given equations

in [23].
7. Flight can continue while the Detection Subsystem is processing frames. Based on

collected data, it takes 200 ms to process a single 4K frame through the Detection
Subsystem.

8. Processing power usage is not considered in calculations other than impact on continu-
ous flight. The scope of this paper is focused on power efficiencies due to non-essential
hover mitigation, not other energy improvements.

H. V. Abeywickrama et al. have published two insightful works [23,24] developing a
comprehensive model for energy consumption of various phases of UAV flight. Notably,
these models only account for power consumption of the vehicle in regards to flight
dynamics. Power consumption of the physical SAA system is beyond the scope of this
paper. Extracting two important equations from their papers leads us to the following:

EH = (4.917H + 257.204)t, (1)

describes the energy in Joules (J) consumed during hover for a given altitude H in meters
for a given time t in seconds.

EF = 308.709t − 0.852, (2)

describes the energy in Joules consumed during steady-state forward flight for a given
time t in seconds.
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Using Equation (1), the energy consumed during hover in the first scenario is 298.26 J.
There would also be additional energy consumption for frame processing and the UAV
would not be making forward flight towards completing the task at hand or getting
physically closer to its objective. In the second scenario and using Equation (2), this
additional 298.26 J would not be consumed, but would rather be limited to forward
flight energy consumption of 326.379 J in the same given time period of 1.06 s plus frame
processing. If the UAV is required to stop flight to hover or loiter while target classification
occurs, it is clear this is untenable and not at all practical for any reasonable frame rate.

4. Conclusions

Current state-of-the-art methods for SAA systems consist of a non-adaptive, single-
stage pipeline which are inherently inefficient for battery powered UAVs. This research
examined utilizing a novel Adaptive, Two-Stage Detection-Classification architecture for
UAV hover mitigation power efficiency gains. Other energy improvements beyond hover
mitigation are beyond the scope of this research paper.

An experimental method was utilized to prototype the proposed approach, train
lightweight target classifiers, and perform a performance comparison against baseline
results. A robust power model was used to approximate UAV power consumption using
the proposed SAA architecture against the single-stage SAA.

To summarize, the proposed architecture reduces power consumption and increases
efficiency of the SAA system in a three-tiered approach:

1. Eliminating hover time while processing frames for target classification.
2. Minimizing network downlink transmissions.
3. Improving on-platform processing efficiency.

First, the presented approach enables real-time processing of target detection and
classification for an on-board image sensor, eliminating the need for the vehicle to stop
forward flight and hover during classification processing. Reducing any unnecessary hover
reduces wasted energy consumption and maximizes profitable flight time for the UAV.
The approach demonstrated here eliminates over 298 J of energy consumption for every
frame that is processed.

Second, by pushing target detection and classification to the edge of compute, the
need to send vast amounts of imagery to a ground station for processing is eliminated.
Overcoming a network-centric UAS architecture improves power consumption by reducing
network datalink transmissions.

Third, an Edge-Centric, Two-Stage, Adaptive Detection and Classification Subsystem
using classical image processing and deep learning together forms a more efficient method
to apply target classification for an entirely on-platform SAA system. Eliminating the Detec-
tion Subsystem from the design makes a standalone Classification Subsystem impractical
for a SAA system on a battery-powered UAV with real-time requirements. Therefore, it is
critical that these subsystems work in concert to perform the SAA function. Utilizing this
approach, a 19% improvement in inference accuracy over the baseline classifier models
was demonstrated.

While much progress has been made with this approach, there certainly is more work
to do. Further refinements to the Classification Subsystem’s CNNs would likely bring
new processing and accuracy improvements. Performing a methodical hyperparameter
optimization would also be of benefit. The power models used for this initial energy
consumption investigation could be fully considered for all phases of flight for a hypo-
thetical mission to gain more insight into the overall power improvements for a typical
UAV use case. Additionally, characterizing and adding SAA processor and sensor energy
consumption to this already robust power model is desired.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CNN Convolutional Neural Network
COTS Commercial-Off-The-Shelf
DoD Department of Defense
EASA European Aircraft Safety Agency
FAA Federal Aviation Administration
GCS Ground Control Station
KIAS Knots-Indicated Air Speed
LAN Local Area Network
ReLU Rectified Linear Unit
ROI Region of Interest
SAA Sense-and-Avoidance
SSD Single Shot Detector
SWaP Size, Power, and Weight
UAS Unmanned Aircraft System
UAV Unmanned Aerial Vehicle
YOLO You Only Look Once
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