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Abstract: Photovoltaic (PV) systems are the most promising technology for residential installation
as an alternative source of energy. To interface the primary source of PV to the electrical grid,
an LCL-filtered inverter is being broadly adopted due to its low volume compared to the L-filtered
one and the superior ability to filter high-frequency harmonics. In this context, this paper proposes
highly accurate digital current controllers for single-phase LCL-filtered grid-connected inverters.
The proposed controllers are: Integral-single-lead, integral double-lead, integral double-lead taking
into account the effect of pulse width modulation (PWM) delay and the proportional-resonant (PR).
These controllers are different from the traditional Proportional-Integral (PI), Proportional-Derivative
(PD), and Proportional-Integral-Derivative (PID). One of the novelties of this paper is the detailed,
step-by-step procedure for tuning each parameter of the proposed digital controllers considering
the dynamic behavior of the LCL filter. The proposed PR has a different and more straightforward
tuning methodology than those procedures commonly found in the literature. Therefore, this paper
is an attractive tool for a fast, accurate, and reliable way to tune digital current controllers for a
single-phase LCL-filtered grid-connected inverter. The controllers were verified in the digital signal
controller (DSC) TMS320F28335 while the power structure runs in a hardware-in-loop (HIL device).
Results show the efficacy of the proposed controllers.
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1. Introduction

1.1. Background and Literature Review

The high penetration of PV system in residences brought new challenges to the distribution
utilities. Several concerns never worried about before are now causing severe problems, obliging utilities
to impose restrictions on the customers. One such issue is the injection of high frequencies components
generated by the pulse width modulation (PWM) of the electronics’ converters used in PV systems [1,2].
This led industries and academia to develop high-order passive filters. After some decades, the LCL-type
become the most dominant output filter of power inverters. Some reasons that made the LCL-type one
of the best options are the low-volume compared to L-type and the superior ability to filtering high
frequencies components. However, the LCL filter presents a natural resonant frequency, which needs
particular attention to prevent high oscillation and instability through it.
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At the same time, the development of the current controller for LCL-filter grid-connected inverters
took special attention in the scientific community. The design of an accurate current controller is vital
for the appropriate operation of the inverter. The controller must follow its reference signal with
negligible steady-state error and must be able to reject disturbances that may appear in the systems.

Regarding the power distribution system, the LCL-filter inverter usually can be connected to single-
or three-phase systems. For residential installations of PV, the connection to a single- or three-phase
distribution system often depends on the rated power of the PV and the availability of such systems.
For high power PV systems, the three-phase grid is preferably chosen [3]. Nevertheless, for low power
and limited availability, several PV systems with LCL-filtered inverter are connected to single-phase
distribution system around the world.

Current controllers for LCL-filtered grid-connected inverter are continually being proposed in the
literature [3]. There are a variety of types of controllers like the proportional-integral (PI) [4], PR [5],
sliding mode, fuzzy-based [6], model predictive control (MPC) [7,8], and so on. Most of the research
covering such controllers is proposed for a three-phase system, admitting that the parameters of the
distribution system are known and they do not change along time [9]. In case of real violation of such
assumptions, the performance of the controller may be deteriorated. Controllers that can operate under
uncertainties in the parameters of the distribution system were proposed in [10,11]. Their proposals
are for three-phase systems and do not pay the desired attention to single-phase systems.

Three-phase current controllers are mature and very well spread in the literature. In [12],
a controller based on state feedback linearization was proposed. The nonlinear system of the LCL-filtered
grid-connected inverter is mapped to a controllable standard type. Then, classical linear system control
method is adopted to design the controller. A PR controller with the ability to ride through faults in
the grid was proposed in [13]. In [14], a control strategy for LCL-filtered inverters was developed
for weak grids. The proposed design method can guarantee the inverter stability and robustness
simultaneously without needing any compensation network, additional hardware, or the complicated
iterative computations that cannot be avoided for the conventional inverter design method.

Regarding controllers for a single-phase LCL-filtered grid-connected inverter, the most dominant
is the PR. A PR controller with disturbance rejection was proposed in [15]. The paper uses some state
observers, which may not be highly accurate in case of uncertainties. On the other hand, [16,17]
presented an optimized method for design current controllers. One drawback of grey wolf optimizer
and the state current observe controller methods is the necessity of a sophisticated algorithm leading to
use of a relatively low sampling frequency. The PI controller is sometimes employed in a single-phase
system. Even knowing that the PI is unable to follow sinusoidal references without null error, its usage
is sometimes justified because the PI is designed to present a low and acceptable steady-state error.
The procedure for tuning a PI, in this case, can be found in [4]. In [18] the mathematical model of
the grid-connected inverter was investigated. Then, its linearized small-signal state-space model was
obtained, and a linear quadratic regulator was achieved by the solution of algebraic Riccati equation
while in [19] an adaptive control of LCL-filtered with time-varying parameters using reinforcement
learning was proposed.

Attempts to use three-phase control strategies in single-phase are also found in the literature.
The idea behind that is to preserve the features and simplicity of three-phase in single-phase systems.
In this case, simplified controllers can be adopted to make the output current follow its reference
signal with negligible steady-state error. The use of PI is largely used. The books [3,9] describe the
procedure for designing single-phase current controllers using three-phase approaches. However,
the performance of the controller is very dependent on the Phase-Locked Loop (PLL) performance,
and there is an effect of axis coupling. In [20,21], the authors proposed a decoupled technique to
the direct-quadrature (dq)-reference frame in a single-phase system. The efficacy of the proposal was
demonstrated, but it brings complexity to the control strategy and dependence of other functions.

The dynamic characteristics of the LCL filter in DC-DC or DC-AC converter are the same.
The differences fall in the nature of currents and voltages across the LCL and in the manner how the
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elements are charged and discharged. In DC-DC converters, the current through the inductors is DC,
having finite, non-null value and ripple. In this context, the LCL elements are analyzed using concepts
of DC circuits. Inductors are charged and discharged with positive current, but interchanging the sign
of the derivative of the current.

The LCL of DC-AC converters handles AC current and voltage. In this case, the average value of
current and voltage is zero. Therefore, the charge and discharge of the LCL elements happens naturally
during the cycles of the AC variables. From the point of view of the current controller, the dynamic
characteristic of the LCL must be modeled in order to make the most suited controller. Since the
controlled current is AC, the controller needs to have high accuracy.

1.2. Novelties and Goals

All the previously mentioned research has their efficacy and legitimacy. However, new issues can
be addressed. The integral single-lead and integral double-lead controllers are familiar topics in the
literature. However, these controllers were employed only to DC-DC converters and, in most cases,
the approach is in the continuous-time domain. The dynamic behavior of the LCL-filtered inverter is
entirely different from the dynamic behavior of DC-DC converters, requiring special care in tuning the
controllers. In this context, the use of the controllers mentioned above was not properly investigated in
the literature for applications in LCL-filtered grid-connected inverters.

This paper brings to the state of the art about controlling single-phase grid-connected inverters
a proper design procedure for tuning the integral single-lead and integral double-lead controllers
considering the dynamic behavior of the LCL-filtered inverter. These controllers are different from
the traditional PI, PD, and PID. To enhance accuracy, there is also a proposal of a tuning procedure
taking into account the PWM delay effect on the integral double-lead controller. Finally, a digital PR
controller was also proposed. The proposed PR has a different and simpler tuning methodology then
those procedures commonly found in the literature. While conventional procedures for PR controllers
in the literature deal with complex and trigonometric equations, the proposed procedure for the PR
controller is simpler and straightforward. The step-by-step procedure for computing each parameter
of the four proposed digital current controller is carefully presented. The proposed controllers can be
applied to LCL-filtered inverters with passive and active resonance damping.

Some advantages of the proposed controllers are: It does not need to know the grid impedance for
their designing, there is no need for voltage feedforward action, it does not need variable transformation
as found in alpha-beta and dq-reference frames, it works in a satisfactory manner in weak grids and
voltage with harmonic distortions, it is not dependent on the performance of a PLL, it takes into
account the current sensor gain, it can be used in three-phase abc-reference frame control strategies,
and it can be employed for active and passive damping-based LCL filters.

The controllers covered in this paper are defined as highly accurate digital current controllers.
The reason for such a definition is because there is an equation for each parameter of the controllers.
No one parameter is computed by trial-and-error or empirical methods. Moreover, for digital
implementation, the coefficients of the controllers were programmed with 11 decimal places. This results
in highly accurate digital controllers.

Therefore, this paper contributes to presenting an attractive guide for a fast, accurate, and reliable
procedure for tuning digital current controllers for a single-phase LCL-filtered grid-connected inverter.

2. Single-Phase LCL-Filtered Grid-Connected Inverter

Figure 1 presents the LCL-filtered inverter connected to a single-phase power distribution grid.
The inverter is made by a half-bridge converter with two DC sources. Nevertheless, all the content
of this paper is also valid for a full-bridge converter with one DC source, as indicated in the figure.
The DC sources represent the PV system plus a DC-DC converter. For the sake of verification of the
proposed controllers, the DC sources will be assumed with fixed value and also with a fixed-plus-10%
of oscillation. The LCL components have the letters c, g, f, and d as subscripts, meaning converter-side,
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grid-side, filter, and damping, respectively. The LCL has a passive damping action, even though
the content of this paper is also valid for active damping action based on capacitor current feedback.
The LCL-filtered inverter is connected to the point of common coupling (PCC). The grid-side inductor
current and the PCC voltage are measured and sent to the digital control strategy. The PCC voltage is
used only to generate a synchronized current reference signal while the grid-side inductor current is
used as feedback to the controller. The block of the digital controller is a simplification of the control
strategy, having the Analog to Digital Converter (ADC), Zero-Order Holder (ZOH), PWM, and the
proposed controllers. The electric grid has a line impedance, represented by Ls and Rs. The relation of
Rs � XLs is preserved since this is commonly found in residential power distribution grids. The values
of them are not necessary for tuning the proposed controllers.
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Figure 1. Simplified diagram of the single-phase LCL-filtered grid-connected inverter.

The DC sources in Figure 1 may also represent other sources instead of a PV system with
DC-DC converter. They may represent batteries or a DC link of back-to-back converter. For such cases,
a bidirectional power flow is usually required. The procedures for tuning the digital current controllers
are also valid when there is a need of bidirectional power flow. As will be observed later, the controllers
are able to make the output current follow sinusoidal reference with negligible steady-state error.
The direction of power, i.e., from the grid or to the grid, is dependent on the phase displacement
of the current reference signal with the PCC voltage. For a power flow from the DC sources to the
grid, the phase displacement is null. For a power flow from the grid to the DC sources, the phase
displacement is 180◦. In both cases, the reference is sinusoidal. Therefore, the controllers are able to
handle bidirectional power flow.

3. Highly Accurate Digital Current Controllers

Figure 2 presents a simplified diagram of the control strategy. The larger rectangle shows the
digital environment. The inverter output current and the PCC voltage are measured through sensors
and sent to the Digital Signal Controller (DSC) via a conditioning circuit (not shown). The DSC has an
ADC with a sampler and zero-order holder (ZOH). The PCC voltage passes in a PLL [22,23] to generate
a synchronized reference signal. The reference is compared to the inverter output current. The result
is the error signal, which in turn is applied to the current controller Ci(z). The figure shows that the
current controller can be one of the highly accurate controllers proposed in this paper. The PWM
interfaces the DSC and the LCL-filtered inverter. Note that both the PWM and LCL-filtered inverter are
described by transfer functions in s-domain. This is necessary to properly design the digital current,
as explained in the following.
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Figure 2. Simplified diagram of the control strategy.

The PLL used in the control strategy deservers special attention. Its purpose is only to generate
a clean sinusoidal signal, synchronized with the PCC voltage. Such a signal is used as reference to
the output current of the LCL-filtered inverter. The performance of the four digital current controllers
shown in Figure 2 is independent of the performance of the PLL. Taking as example control strategies
running in dq-rotating reference frame [24], if the PLL fails to be accurately synchronized with the
PCC voltage, the control strategy will not perform as expected because the reference frame will not
be correct. As a result, the inverter output current may present a highly distorted waveform and the
whole system may become unstable. In the proposed controllers, if the PLL fails to be accurately
synchronized with the PCC voltage, the inverter output current keeps following the reference signal,
even though it may exist a short phase displacement between the output current and the PCC voltage.
Obviously, this is not a desired situation. To overcome that, the PLL must assure the generation of a
clean and synchronized reference signal even under distorted voltage grid.

Independently of what kind of controller is employed in the control strategy, tuning the parameters
may be performed in a variety of manners. Figure 3 shows a chart of the most traditional methods for
tuning a digital controller. Starting from the system modeling in s-domain, the designer can choose
between two paths: (i) apply the Z-transform in the s-domain model, getting the z-domain model.
In this approach, the effect of the ZOH is taken into account. Then, the current controller can be tuned
through pole placement [25], state-feedback [26,27], and through conventional methods using the
fictitious w-plane [28]. These methods, even though very mature and broadly adopted, have some
drawbacks. The pole placement method is not trivial because the designer must define the location of
the poles in the closed-loop system. The state-feedback method requires the measurement of several
variables and its performance is deteriorated under parameter variations. The conventional methods
through w-plane require several domain transformations, leading to inaccuracy. On the other hand,
the designer can choose the path (ii). By choosing that, the controller is designed in s-domain, and later
it is discretized, reaching the digital controller. For the majority of applications, this method results
in an accurate controller up to the Nyquist frequency. Throughout this paper, path (ii) is adopted.
The designed current controllers will be plotted with their equivalent s-domain controllers to show the
accuracy of them. Moreover, the choice for path (ii) justifies the definition of the PWM in s-domain as
shown in Figure 2.
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Figure 3. Techniques for tuning a digital controller.

3.1. System Modeling in s-Domain

The dynamic model of the LCL-filtered grid-connected inverter is commonly found in the literature.
Its obtaining procedures as well as the dimensioning of the LCL components are beyond the scope of
this paper, but are found in [24,29,30]. The transfer function that relates the grid-side current iinv and
the inverter duty-cycle d is defined as G(s) and given by

G(s) =
iinv(s)
d(s)

= Kinv
sC f Rd + 1

s3LgLcC f + s2C f Rd
(
Lc + Lg

)
+ s

(
Lc + Lg

) (1)

where Kinv is the inverter gain, defined as:

Kinv = 2Vdc (2)

The previous equations are valid for the LCL filter with passive damping, as shown in Figure 1.
For the case where active damping with capacitor current feedback is employed, the transfer function
that relates the grid-side current iinv and the inverter duty-cycle d is [4]:

Gad(s) =
iinv(s)
d(s)

= Kinv
1

s3LgLcC f + s2C f LgKinv

ka + s
(
Lc + Lg

) (3)

where ka is the coefficient gain of the active damping action. Throughout this paper, Equation (1) is
adopted for tuning the proposed, highly accurate digital current controllers. Nevertheless, Equation (3)
could be used as well. The elements Rc and Rg were neglected in (2) and (3) because their effects
in the dynamic characteristic of the LCL filter are almost null. Their values can be approximated to
zero without loss of generalities. Neglecting Rc and Rg is a common practice in LCL applications,
as observed in [29–31].

The transfer function of the PWM without considering the effect of its delay is given by:

M(s) =
1

2ck
(4)
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where ck is the amplitude of the carrier signal. The numeral 2 in the denominator is due to the
double-update method used in the PWM [25].

The transfer function of the PWM, taking into account the effect of its delay, is given by the Pade’s
approximation as [32]:

Mdelay(s) = −
1

2ck

s− 2
td

s + 2
td

(5)

Note a minus signal in front of the equation. The variable td is the PWM delay, given by:

td =
1

1.5 fs
(6)

where fs is the sampling frequency. In this case, the switching frequency is equal to the sampling
frequency. The choice of the sampling frequency must respect the Nyquist criteria in order to avoid
the aliasing effect [28] and must be sufficiently high to allow the computation of all required calculus
for a proper operation of the control strategy. Assuring that will avoid losing switching periods.
Regarding the switching frequency, the choice of its value usually depends on the technologies of the
employed semiconductors and on passive components volume requirements. The procedures proposed
here are valid for any kind of transistor technologies and for any value of switching frequency.

The value of 1.5 that appears in (6) is due the natural one-sample delay of digital applications
summed with half-sample of the computational time needed to run the control strategy. The value of
1.5 is largely adopted in control strategies when the delay is modeled [3]. Other values may be used as
1 or 2, depending on the design specifications. In this paper, the value 1.5 is enough for taking into
account all the delays presented in the system.

The current sensor is modeled with a transfer function in s-domain. Its definition is just the sensor
gain Hi, given by:

H(s) = Hi (7)

According to Figure 2, the open-loop transfer function (OLTF) without considering the current
controller is given by:

OLTFu(s) = G(s)M(s)H(s) (8)

The subscript u means uncontrolled. It is essential to highlight that G(s) may be replaced by Gad(s)
and M(s) for Mdelay(s) depending on the system configuration and the interest in considering the effect
of the PWM delay.

For the sake of comparison, Figure 4 presents the Bode diagrams of the transfer function that
relates to the grid-side current iinv and the inverter duty-cycle d considering passive and active damping.
In this case, the switching frequency is 10 kHz and the value for Ka is 0.55. The figure shows a region
of interest, which is from approximately 1.5 kHz and below. Such a region is the region where the
controller acts, taking into account that the desired cutoff frequency for the system should be from 8 to
10 times lower than the switching frequency [33]. The curves are almost coincident for the magnitude,
while there is a slight difference in the phase curves. This justifies that the proposed controllers
presented in the next sections are useful for both methods of LCL damping, the passive and active.
Considering the active damping method will require a more significant phase advance in the controller,
the proximity of these curves also depends on Ka factor.
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duty-cycle d considering passive and active damping.

The procedures presented in the following sections are independent of each other. Even though
they have coefficients named equally, they are not directly related. In other words, the coefficient R1

in the integral single-lead controller is not the same as the coefficient R1 in the integral double-lead
controller. This is also valid for all variables that appear in the procedures. The choice of using the
name of the same coefficients in different controllers is to keep the method as simple as possible.
Additionally, the procedures proposed in this paper may serve as a guide for tuning current controllers.
The reader can follow only the procedure of the controller that best fits his or her goals.

3.2. Tuning the Integral Single-Lead Digital Current Controller

The integral single-lead controller has a pole at the origin and a single pole–zero pair. The pole at
the origin is an integral part of the controller, while the pole–zero pair is responsible for leading the
phase [32]. Throughout this paper, this controller will be called Ci_sl. Its transfer function in s-domain
is given by:

Ci_sl(s) =
1 + sR2C1

sR1(C1 + C2 + sR2C1C2)
(9)

The procedure for tuning the integral single-lead controller starts with the definition of the desired
cutoff frequency ( fc), in Hz, and the desired phase margin (MFd), in degree. The most recommended
definition of the cutoff frequency is to pick a value that is 8 to 15 times lower than the switching
frequency, while the phase margin is any value from 30 to 90◦. With that defined, the next step is to get
the value of the phase at the desired cutoff frequency in the uncontrolled OLTF. This is expressed as:

ϕsl = ∠OLTFu( fc) [deg] (10)

Similarly, the value of the gain at the desired cutoff frequency in the uncontrolled OLTF is given by:

Gsl_dB =
∣∣∣OLTFu( fc)

∣∣∣ [dB] (11)

The gain at the desired frequency obtained in the previous equation is in dB and must be converted
into real value. This is performed by:

Gsl = 10
|Gsl_dB |

20 (12)

To better visualize where ϕsl is located in a Bode diagram, Figure 5 shows a generic Bode diagram
indicating the points for the desired cutoff frequency, the phase ϕsl, and gain Gsl at the desired cutoff

frequency. This Bode diagram is just for illustration and has nothing to do with the system covered in
this paper.
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The phase that the integral single-lead controller must lead is given by:

α = MFd −ϕsl − 90◦ [deg] (13)

The 90◦ in the equation is due to the phase delay caused by the controller itself [32]. The maximum
phase that the integral single-lead controller is able to lead is 90◦, as will be shown later. In case there
is a need for lead more than 90◦, the integral double-lead controller should be used.

The next step is to compute the K-factor using [34]:

Ksl = tan
(
α
2
+ 45◦

)
(14)

At this point, it is convenient to define the following constant:

Csl =
1

2π fcGslKsl
(15)

In this way, the parameters of the current controller in s-domain are given by the following equations:

C2 = must be de f ined (100n f or example) (16)

R1 =
Csl
C2

(17)

C1 = C2
(
Ksl

2
− 1

)
(18)

R2 =
Ksl

2π fcC1
(19)

By computing the four previous equations, the integral single-lead current controller in the
s-domain is finally tuned. Before discretizing the controller, it is necessary to check if the desired cutoff

frequency and phase margin were obtained. To do that, the OLTF considering the designed controller
is given by:

OLTFc_sl(s) = Ci_sl(s)OLTFu(s) = Ci_sl(s)G(s)M(s)H(s) (20)

The subscript c means controlled.
The closed-loop transfer function (CLTF) is given by:

CLTFsl(s) =
OLTFc_sl(s)

OLTFc_sl(s) + 1
(21)
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Since the cutoff and the phase margin are in accordance with that desired values, the controller
is discretized. The integral single-lead current controller is discretized through the backward Euler
approximation [28], given by:

Ci_sl(z) = Ci_sl(s)
∣∣∣
s= 1−z−1

Ts
(22)

where Ts is the sampling period. The result of the previous equation is the digital current controller
whose transfer function is given by:

Ci_sl(z) =
b0 + b1z−1 + b2z−2

a0 + a1z−1 + a2z−2
(23)

The following equations give the coefficients of the digital current controller:

βsl = 4R1R2C1C2 + 2TsR1(C1 + C2) (24)

b0 =
Ts

2 + 2TsC1R2

βsl
(25)

b1 =
2Ts

2

βsl
(26)

b2 =
Ts

2
− 2TsC1R2

βsl
(27)

a0 = 1 (28)

a1 =
−8R1R2C1C2

βsl
(29)

a2 =
4R1R2C1C2 − 2TsR1(C1 + C2)

βsl
(30)

This ends the tuning procedure for the integral single-lead digital current controller.

3.3. Tuning the Integral Double-Lead Digital Current Controller

The integral double-lead controller has a pole at the origin and two pairs of zero–pole.
This controller can lead the phase twice higher than the integral single-lead controller. Throughout this
paper, the integral double-lead controller will be called Ci_dl. Its transfer function in s-domain is
given by:

Ci_dl(s) =
s2R2C1C3(R1 + R3) + s(R2C1 + R1C3 + R3C3) + 1

s3R1R2R3C1C2C3 + s2[R1R3C3(C1 + C2) + R1R2C1C2] + sR1(C1 + C2)
(31)

The procedure for tuning the integral double-lead controller also starts with the definition of the
desired cutoff frequency ( fc), in Hz, and the desired phase margin (MFd), in degrees. For convenience,
the desired cutoff frequency and phase margin will be the same as from the previous. As a result,
the names of these variables are preserved.

The next step is to get the value of the phase at the desired cutoff frequency in the uncontrolled
OLTF, expressed as:

ϕdl = ∠OLTFu( fc) [deg] (32)

In a similar way, the value of the gain at the desired cutoff frequency in the uncontrolled OLTF is
given by:

Gdl_dB =
∣∣∣OLTFu( fc)

∣∣∣ [dB] (33)
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The gain at the desired frequency obtained in the previous equation is in dB and must be converted
into real value. This is performed by:

Gdl = 10
|Gdl_dB |

20 (34)

Note that the previous three equations are the same for the integral single-lead controller. It is
worth highlighting that in case the phase to be led can be obtained by using the integral single-lead
controller (lower than 90◦), the use of the integral double-lead controller is unnecessary.

The K-factor for the integral double-lead controller is given by:

Kdl =
[
tan

(
α
4
+ 45◦

)]2
(35)

The value of α is the same as previously computed. Notice that the K-factor for this controller is
different from the previous one. The parameters of the current controller in s-domain are given by the
following equations:

R1 = must be de f ined (1000 f or example) (36)

C2 =
1

2π fcGdlR1
(37)

C1 = C2(Kdl − 1) (38)

R2 =

√
Kdl

2π fcC1
(39)

R3 =
R1

Kdl − 1
(40)

C3 =
1

2π fcR3
√

Kdl
(41)

The integral double-lead current controller in the s-domain is finally tuned. The OLTF considering
the designed controller is given by:

OLTFc_dl(s) = Ci_dl(s)OLTFu(s) = Ci_dl(s)G(s)M(s)H(s) (42)

The closed-loop transfer function (CLTF) is given by:

CLTFdl(s) =
OLTFc_dl(s)

OLTFc_dl(s) + 1
(43)

Since the cutoff and the phase margin are in accordance with the desired values, the controller is
discretized. The integral double-lead current controller is also discretized through the backward Euler
approximation [28], given by:

Ci_dl(z) = Ci_dl(s)
∣∣∣
s= 1−z−1

Ts
(44)

The result of the previous equation is the digital current controller whose transfer function is
given by:

Ci_dl(z) =
b0 + b1z−1 + b2z−2 + b3z−3

a0 + a1z−1 + a2z−2 + a3z−2
(45)

The coefficients of the digital current controller are given by the following equations, together with
the definition of five constants, D1 to D5:

D1 = R2C1C3(R1 + R3) (46)

D2 = R2C1 + R1C3 + R3C3 (47)
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D3 = R1R2R3C1C2C3 (48)

D4 = R1R3C1(C1 + C2) + R1R2C1C2 (49)

D5 = R1(C1 + C2) (50)

βdl = D3 + D4Ts + D5Ts
2 (51)

b0 =
TsD1 + D2Ts

2 + Ts
3

βdl
(52)

b1 = −
2TsD1 + D2Ts

2

βdl
(53)

b2 =
TsD1

βdl
(54)

b3 = 0 (55)

a0 = 1 (56)

a1 = −
3D3 + 2D4Ts + D5Ts

2

βdl
(57)

a2 =
3D3 + D4Ts

βdl
(58)

a3 = −
D3

βdl
(59)

Effectively completing all procedures for the integral double-lead digital current controller, the next
section will continue with further recommendations. However, it is necessary to take special view on
the lead phase that the integral single-lead and integral double-lead controllers can employ. Figure 6
shows the relation between lead phase versus the K-factor for both controllers. The integral single-lead
controller can lead the phase at most 90◦, as previously mentioned. As observed, increasing the K-factor
from 50 and beyond will not result in an increase in the lead phase. On the other hand, the integral
double-lead controller has its maximum lead phase at 180◦. This chart is useful because depending on
the value the designer computes for α in the previous procedures will define what controller can or
must be used.
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3.4. Tuning the Integral Double-Lead Digital Current Controller Considering the PWM Delay Effect

The two previous controller tuning procedures neglected the effect of the PWM delay.
Neglecting such effect is quite acceptable in designing current controllers for LCL-filtered grid-connected
inverters, since the switching frequency is usually high and the time constant of the controller is
relatively low. However, one may desire to take into account the effect of PWM delay on the procedure
for tuning the controller. This section presents the tuning procedure for the integral double-lead digital
current controller considering the PWM delay effect. As will be observed later, the consideration of the
PWM delay effect does not cause any change in the magnitude curve of the OLTF, but it modifies the
phase curve.

In this context, the transfer function of the PWM is presented in Equation (5) and repeated here
for simplicity.

Mdelay(s) = −
1

2ck

s− 2
td

s + 2
td

(60)

The OLTF without considering the current controller is passes to be:

OLTFu(s) = G(s)Mdelay(s)H(s) (61)

From now on, the procedure for tuning the integral double-lead digital current controller is
the same as the previous one and will be omitted here, paying attention that the previous equation
takes over.

In the end, the transfer function of the designed controller is given by the following equation,
paying attention that the coefficients here are different from the previous ones, even though they are
named equally.

Ci_dl_delay(z) =
b0 + b1z−1 + b2z−2 + b3z−3

a0 + a1z−1 + a2z−2 + a3z−2
(62)

For the sake of illustration, Figure 7 presents the OLTF for both considering and not considering
the effect of the PWM delay. The magnitude curves are coincident, as expected. The phase curves are
slightly different for the region of interest. The controller must lead to a higher phase when taking into
account the PWM delay. Such an increase in the value of the phase to be driven is to compensate for
the PWM delay.
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3.5. Tuning the Digital Proportional-Resonant Controller

The three previous digital controllers were implemented by a digital filter, defined by a z-domain
transfer function. This means that the digital current controller Ci(z) shown in Figure 2 can be one of the
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following controllers: Ci_sl(z), Ci_dl(z), or Ci_dl_delay(z). The implementation of the digital PR controller
is different. Figure 8 show the block diagram of how the digital PR controller is implemented [5].
The PR controller is made by a proportional gain

(
kp

)
, a resonant gain (ki) and a digital resonant filter,

which in the z-domain transfer function is named Hr(z).Electricity 2020, 1, FOR PEER REVIEW 14 of 26 
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Notice that the current sensor gain is considered in computing the proportional gain. The 
resonant gain is obtained as: 

𝑘𝑘𝑖𝑖 =  
𝜔𝜔𝑟𝑟2�𝐿𝐿𝑔𝑔 + 𝐿𝐿𝑐𝑐�[(2𝜉𝜉 + 1)2 − 1]

𝑉𝑉𝑑𝑑𝑐𝑐𝐻𝐻𝑖𝑖
 (64) 

The next step is to obtain the coefficients of the resonant filter 𝐻𝐻𝑟𝑟(𝑧𝑧). This is done by applying 
the Z-transform in its equivalent analog notch filter. The transfer function of an analog notch filter is 
given by: 

𝐻𝐻𝑟𝑟(𝑠𝑠) =  
𝑠𝑠𝑑𝑑𝑟𝑟

𝑠𝑠2 + 2𝑠𝑠𝑑𝑑𝑟𝑟 + 𝜔𝜔𝑟𝑟2
 (65) 

Note that the above transfer function is defined in s-domain and it represents a non-ideal notch 
filter. By applying the Z-transform, it reaches the z-domain transfer function of the digital resonant 
filter, given by: 

𝐻𝐻𝑟𝑟(𝑧𝑧) =  ℤ{𝐻𝐻𝑟𝑟(𝑠𝑠)} =
𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 + 𝑏𝑏2𝑧𝑧−2

𝑡𝑡0 + 𝑡𝑡1𝑧𝑧−1 + 𝑡𝑡2𝑧𝑧−2
 (66) 

The coefficients are given by the following Equations, from (67) to (73). 
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The procedure for tuning the digital PR controller consists of obtaining the proportional and
resonant gain, as well as the coefficients of the digital resonant filter. The procedure proposed in this
paper differs from those commonly found in the literature. There, the proportion and resonant gains
are computed using nontrivial trigonometric functions [4]. Here, the procedure is more simplified
and accurate.

The first step is to define the desired parameters of the PR controller. They are:

• Desired resonant frequency in Hz and rad/s, named fr and ωr = 2π fr, respectively. This frequency
must be the grid frequency because the PR controller acts in the fundamental frequency for proper
active power injection of the LCL-filtered grid-connected inverter.

• Damping factor, named ξ. Any value between 0.9 and 1 is a good choice.
• Desired bandwidth of the resonant filter in Hz and rad/s, named Bs And Br = 2πBs.
• Sampling frequency in Hertz and period in seconds, named fs and Ts.

The proportional gain is obtained as [5,35]:

kp =
(2ξ+ 1)

√
(2ξ+ 1)ωr

(
Lg + Lc

)
−

(
Rg + Rc

)
Vdc

2 Hi
(63)

Notice that the current sensor gain is considered in computing the proportional gain. The resonant
gain is obtained as:

ki =
ωr

2
(
Lg + Lc

)[
(2ξ+ 1)2

− 1
]

VdcHi
(64)

The next step is to obtain the coefficients of the resonant filter Hr(z). This is done by applying
the Z-transform in its equivalent analog notch filter. The transfer function of an analog notch filter is
given by:

Hr(s) =
sBr

s2 + 2sBr +ωr2 (65)

Note that the above transfer function is defined in s-domain and it represents a non-ideal notch
filter. By applying the Z-transform, it reaches the z-domain transfer function of the digital resonant
filter, given by:

Hr(z) = Z
{
Hr(s)

}
=

b0 + b1z−1 + b2z−2

a0 + a1z−1 + a2z−2
(66)

The coefficients are given by the following Equations, from (67) to (73).

βPR =
0.5Br

2√
ωr2 − 0.25Br2

sin
[(

Ts
√
ωr2 − 0.25Br2

)]
e−0.5BrTs (67)
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b0 = BrTs (68)

b1 =
[
−Bre−0.5BrTs cos

(
Ts

√
ωr2 − 0.25Br2

)
− βPR

]
Ts (69)

b2 = 0 (70)

a0 = 1 (71)

a1 = −2e−0.5BrTs cos
(
Ts

√
ωr2 − 0.25Br2

)
(72)

a2 = e−BrTs (73)

By computing the previous equations, the tuning procedure for the digital PR controller is finished.

4. Case Study

This section presents a case study of tuning the integral single-lead, integral double-lead,
integral double-lead considering the PWM delay effect and PR controllers based on the previous
procedures. Table 1 shows the system parameters. The desired cutoff and the desired phase margin are
listed at the end of the table.

Table 1. System parameters.

Parameter Value Unit

Grid Voltage 127 Vrms
Grid frequency 60 Hz

Converter-side inductor Lc 2.28 mH
Converter-side resistance Rc 0.01 Ω

Grid-side inductor Lg 990 uH
Grid-side resistance Rg 0.01 Ω

LCL capacitance C f 1.64 uF
LCL damping resistance Rd 20.5 Ω

DC-link voltage Vdc 220 V
Grid resistance Rs 2 Ω
Grid inductance Ls 3 mH

Current sensor gain Hi 0.1 V/A
Switching frequency fsw 10 kHz

Sampling period Ts 1 × 10−4 s
Amplitude of the carrier ck 1 V
Desired cut-off frequency fc 1250 Hz
Desired phase margin MFd 60

Applying the values of Table 1 in the four procedures presented in Section 3 result in the designed
digital current controller, whose final coefficients are listed in Table 2. The last column listed the
coefficients of the digital resonant filter. The proportional and resonant gains are listed at the end of
the table.

Figure 9 presents the frequency response of the designed digital current controllers. Note that the
PR controller is written as kp + kiHr(z), which is the final transfer function of such a controller. At the
desired cutoff frequency (1250 Hz) the controllers have similar behaviors, valid for magnitude and
phase curves. This proves that the four covered types of controller are actually enough to control the
output current of an LCL-filtered grid-connected inverter. The PR controller has a resonant peak at
60 Hz, showing that its design is accurate.
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Table 2. Coefficients of the designed digital current controllers.

Coefficient Ci_sl(z) Ci_dl(z) Ci_dl_delay(z) Hr(z)

b0 0.72530697012 0.85193622372 0.82069570170 0.00094247779
b1 0.13349036402 −1.17619397828 −1.23998086046 −0.0009418083
b2 −0.59181660609 0.40596708885 0.46836864477 0
b3 - 0 0 -
a0 1.00000000000 1.00000000000 1.00000000000 1.00000000000
a1 −0.79315175064 −1.8623848218 −1.75577338175 −1.99763758092
a2 −0.20684824935 1.01692028896 0.84860413978 0.99905796619
a3 - −0.15453546714 −0.09283075802 -
kp - - - 0.55163792409
ki - - - 156.532858927
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Figure 9. Frequency response of the designed digital current controllers.

Figure 10 presents the Bode diagrams of the designed current controller in the s-domain and
z-domain. For all of them, the curves for magnitude and phase are almost coincident, especially at the
desired cutoff frequency. This proves that the methodology of designing a digital controller based on
conventional methods in s-domain and later applying a discretization technique is valid and highly
accurate. For the PR controller, Figure 10d, only the comparison of the resonant filter is shown for better
visualization. Figure 10d also shows that the gain is unitary (0 dB) only at 60 Hz. All other frequencies
are attenuated. As a result, only the 60 Hz component will pass through this filter. Another point that
deserves attention is that the phase is slightly different in the s and z domain. This means that the
obtained phase margin is different from the desired one. However, such difference is minimal and
does not invalidate the proposed tuning procedure.
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Figure 10. Bode diagrams of the designed current controller in s-domain and in z-domain:
(a) Integral-single-lead, (b) integral double-loop, (c) integral double-loop considering the PWM
delay effect, and (d) resonant filter.
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It is important to highlight that in Figure 10 the three first controllers present high gain at 120 Hz.
It means that they are able to minimize considerably the effect of the double-frequency pulsation
commonly found in single-phase applications. For the PR controller, Figure 10d, and since its approach
is to operate at 60 Hz, the ability to minimize such a pulsation is shown as a very low gain at 120 Hz.
For the low-frequency region, the three first controllers present high gain. This is attractive because the
steady-state error is inversely proportional to the gain at very low frequencies. For the last controller,
the analysis of the steady-state error is different. For this case, the error can be computed at the tuned
frequency. At the tuned frequency, the gain is 0 dB, which is 1 in real values. This means that the output
variable is equal to 1 multiplied by the input. As a result, the output is equal to the input, as expected
for component at the tuned frequency.

Figure 11 presents the Bode diagram for the closed-loop transfer function considering the designed
current controllers. Note that the curves are for the closed-loop transfer function. The names of the
controllers pointing at them are just in indication of what controller was used to plot such a curve.
These diagrams are plotted in s-domain. Concerning the magnitude curves, the implementation of the
proposed controllers makes the closed-loop system present similar behavior along the frequencies
in the region of interest. For low frequencies, all of them present a gain of 0 dB, which makes the
steady-state error to be null. At the cutoff frequency, the curves begin to fall. The curve for PR controller
begins to fall first because its tuning procedure is different from the other controller regarding the
definition of the desired cutoff frequency. In the phase curves, it is evident that all of them are stable
and reached the desired phase margin. A zoom is presented for better visualization.
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5. Hardware-in-Loop Experimental Verification

The control strategy presented in Figure 2 was experimentally verified in the DSC TMS320F28335
while the power structure was emulated in the HIL 402 device from Typhoon company. The digital
current controller designed in Section 4 was implemented one by one. Results were collected using
a desk oscilloscope. Figure 12 presents a diagram of the experimental and HIL verification as well
as a picture of it. The HIL sends a signal of variables along the power structure to the DSC through
the interface board. In this case, the signals that are sent are the inverter output current and the PCC
voltage. The DSC runs the control strategy with the digital current controller and generates the PWM
signal, which in turn acts in the HIL. The DSC is connected directly in the interface board. Once the
HIL has fidelity to emulate power electronic systems in real time, the DSC receives, processes, and
sends signal to the HIL in a similar way of real systems. Therefore, from the point of view of the DSC,
the proposed, highly accurate digital current controllers for a LCL-filtered grid-connected inverter
is verified experimentally. To visualize in the oscilloscope the reference signal, which is within the
DSC, the digital-to-analog converter (DAC) of the interface board was used. The reference signal in the
following results show some steps due to the DAC are buffer-type and the relation of the sampling
frequency and the reference signal frequency is not an integer number. However, the reference signal
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within the DSC is purely sinusoidal. This is verified in the inverter output waveforms presenting
sinusoidal shape.
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Figure 12. Experimental and HIL verification: (a) Simplified diagram (b) picture.

The interface board is needed to fit the signals that come from the HIL and go to the analog
inputs of the DSC. The HIL delivers signal varying from −5 to 5 V while the DSC supports signals
ranging from 0 to 3 V. Therefore, there was a need for programming, such as compensation in the
DSC. The amplitude and offset compensation programmed into the DSC was not shown in Figure 2.
Another gain adjustment was necessary before the digital current controller as 5Ci(z) for the integral
single-lead, integral double-lead, and integral double-lead with PWM delay effect and as 5kp for the
PR controller. These amplitude, gain, and offset adjustments are just for implementation purpose and
do not invalid the tuning procedures of the current controllers.

Figure 13 presents the PCC voltage, the inverter output current, and its reference signal for
the four designed controllers during initializing. Initially, the reference is null. Later, the reference
goes to its maximum value. Before and after the initialization, it is clear that the output current is
following its reference with negligible steady-state error for all controllers. This shows the efficacy of
the highly accurate, proposed controllers and their tuning procedures. During transitory behavior,
the PR controller shows superior performance. Even though the integral single-lead and integral
double-lead considering the PWM delay effect showed relative high overshoot, this could be minimized
by imposing the reference at zero phase of the grid or making a slow ramp on its amplitude. To show
the behavior of the controllers, the time of the reference step was applied randomly. Concerning the
PCC voltage, its waveform is not purely sinusoidal, showing a typical power distribution voltage grid
with Rs � XLS. This is valid for before and after the initialization of the inverter. This is attractive
because it shows the ability of the proposed controller to work in weak grids, which are the most
severe for current controllers. Another point that deserves attention is that the controller designed
without considering the PWM delay effect showed a satisfactory performance.
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Figure 13. PCC voltage, the inverter output current, and its reference signal during initialization for:
(a) Integral-single-lead controller, (b) integral double-lead controller, (c) integral double-lead controller
considering the PWM delay effect, and (d) PR controller. (Ch1: 360 V/V; Ch2: Ch4: 20 A/V).

Figure 14 presents the PCC voltage, the inverter output current, and its reference signal during a
step in the reference signal from 0.75 to 1 pu. All controllers showed accurate performance, not presenting
overshot and oscillatory behavior.

Electricity 2020, 1, FOR PEER REVIEW 19 of 26 

 

  
(c) (d) 

Figure 13. PCC voltage, the inverter output current, and its reference signal during initialization for: 
(a) Integral-single-lead controller, (b) integral double-lead controller, (c) integral double-lead 
controller considering the PWM delay effect, and (d) PR controller. (Ch1: 360 V/V; Ch2: Ch4: 20 A/V). 

Figure 14 presents the PCC voltage, the inverter output current, and its reference signal during 
a step in the reference signal from 0.75 to 1 pu. All controllers showed accurate performance, not 
presenting overshot and oscillatory behavior. 

  

(a) (b) 

  

(c) (d) 

Figure 14. PCC voltage, the inverter output current, and its reference signal during a step in the 
reference signal from 0.75 to 1 pu: (a) Integral-single-lead controller, (b) integral double-lead 
controller, (c) integral double-lead controller considering the PWM delay effect, and (d) PR controller. 
(Ch1: 360 V/V; Ch2: Ch4: 20 A/V). 

vpcc

iiniinv_ref

vpcc

iinv_ref
iinv

vpcc

iinv

vpcc

iinv

vpcc

iinv

vpcc

iinv

Figure 14. PCC voltage, the inverter output current, and its reference signal during a step in the
reference signal from 0.75 to 1 pu: (a) Integral-single-lead controller, (b) integral double-lead controller,
(c) integral double-lead controller considering the PWM delay effect, and (d) PR controller. (Ch1: 360 V/V;
Ch2: Ch4: 20 A/V).
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Figure 15 present the PCC voltage, the inverter output current, its reference signal, and the DC
voltage during the inclusion of oscillation at the DC link. The oscillation has 10% of the DC voltage
and 120 Hz. The output current keeps following its reference signal, as the oscillation was inexistent.
This scenario may represent a malfunction in the PV plus DC-DC converter that is connected to the DC
link of the LCL-filter inverter or the inevitable double-frequency pulsation in single-phase systems.
Even in these cases, the results show the ability of the proposed controller to keep working accurately.
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Figure 15. PCC voltage, the inverter output current, its reference signal, and the DC voltage during
the inclusion of oscillation at the DC link: (a) Integral-single-lead controller, (b) integral double-lead
controller, (c) integral double-lead controller considering the PWM delay effect, and (d) PR controller.
(Ch1: 360 V/V; Ch2: Ch4: 20A/V; Ch3: 225 V/V).

The PCC voltage with harmonic distortion is more and more common in the power distribution
system. Figure 16 shows the PCC voltage, the inverter output current, and its reference signal when the
grid voltage has 5% related to the fundamental at the fifth harmonic. The controllers keep following
their reference signal.
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Figure 16. The PCC voltage, the inverter output current, and its reference signal when the grid voltage
has 5% related to the fundamental at the fifth harmonic: (a) Integral-single-lead controller, (b) integral
double-lead controller, (c) integral double-lead controller considering the PWM delay effect, and (d) PR
controller. (Ch1: 360V/V; Ch2: Ch4: 20A/V).

6. Discussion

This section discusses some relevant extra issues of the proposed research. The first is the evaluation
of the controllers under bidirectional power flow. Figure 17 presents results when the reference signal
for the output current changes its phase related to the PCC voltage. Initially, the current is sinusoidal
and in phase with the PCC voltage. Then, the reference signal suffers a 180-degree phase shift. After the
transitory interval, the output current returns to follow its reference with negligible steady-state error.
Before the transition in the reference, the inverter was injecting active power into the grid. After,
the inverter is consuming power from the grid. The inverter output current for the four controllers
shows similar behavior as those found during initialization. No unpredictable behavior or instability
was observed, indicating that the controllers designed using the proposed procedures were efficient
for bidirectional power applications.
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bidirectional power flow is investigated: (a) Integral-single-lead, (b) integral double-loop, (c) integral
double-loop considering the PWM delay effect, and (d) resonant filter.

The second topic is the performance of the PLL. Figure 18 shows the PCC voltage, the current
reference signal, and the theta signal of the PLL with 5% related to the fundamental at the fifth harmonic.
The theta signal, as well as the reference signal for the inverter output current, is clean even in the
presence of harmonics. The reference signal is purely sinusoidal. This shows that the PLL employed in
this paper was enough to operate under distorted voltage grids.
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Another topic that deservers discussion is the frequency of the grid where the inverter is connected.
Even though the procedures proposed in this paper used 60 Hz as frequency of the grid, their equations
were valid to grid with 50 Hz as well. Attention must be paid to design the PR controller, in which
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the tuned frequency must be 50 Hz. Moreover, it is attractive to choose the frequency and sampling
frequency as multiple of the grid frequency. This makes the ratio between the switching frequency and
the grid frequency an integer number, which avoids loss of information during programming the DSC.

Weak grids often experience frequency variation at the PCC. Consequently, a grid-connected
inverter must be able to work under frequency variation conditions. Depending on the deviation of
the frequency value, the inverter must either switch off or keep working [3]. Concerning the four
controllers proposed in this paper, the PR is the more sensitive for frequency variation. In order to
make a PR able to track the frequency variation at the PCC, its parameter tuning procedure needs to be
adaptive. Adaptive approaches were beyond the scope of this paper. However, the PR designed in this
paper as well as the PLL can work under frequency variation. This is due to the non-null bandwidth
of them. Figure 19 shows the PCC voltage, the inverter output current, its reference signal, and the
frequency measurement of the PLL during a transition in the frequency of the PCC from 57 to 62 Hz.
Such a variation is one of the most severe in weak grids and their limits may not last for more than
seconds. The inverter output current keeps following its reference signal with negligible steady-state
error. The oscillation in the frequency measurement was expected because the PLL is designed to
work at 60 Hz. This oscillation does not compromise the performance of the controller. Therefore,
the proposed PR controller is able to work satisfactorily in a weak grid with frequency variation.
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7. Conclusions

This paper prosed highly accurately digital current controllers for LCL-filtered grid-connected
inverters. The current controllers were the integral single-lead, integral double-lead, integral double-lead
taking into account the effect of PWM delay, and the PR. A step-by-step procedure for each one was
carefully presented and investigated. Later, the controllers were designed, and the Bode diagram
showed the achievement of pre-specified desired parameters.

The proposed controllers were implemented in a physical DSC TMS320F28335 while the power
structure was run in the HIL 402 (Typhoon HIL Inc., Novi Sad, Serbia). Results showed the accurate
performance of the controller in making the inverter output current follow its reference signal with
a steady-state null error. The controlled variables did not show either oscillatory or unpredictable
behavior. Therefore, the controllers proposed in this paper are attractive solutions for single-phase
LCL-filtered grid-connected inverters. Moreover, the tuning procedures are an easy, fast, and accurate
way to design the proposed digital current controllers.
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