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Abstract: The major industrial cities of Bangladesh are experiencing significant air-pollution-related
problems due to the increased trend of particulate matter (PM2.5) and other pollutants. This paper
aimed to investigate and understand the relationship between PM2.5 and land use and climatic
variables to identify the riskiest areas and population groups using a geographic information system
and regression analysis. The results show that about 41% of PM2.5 concentration (µg/m3) increased
within 19 years (2002–2021) in the study area, while the highest concentration of PM2.5 was found
from 2012 to 2021. The concentrations of PM2.5 were higher over barren lands, forests, croplands,
and urban areas. From 2002–2021, the concentration increased by about 64%, 62.7%, 57%, and 55%
(µg/m3) annually over barren lands, forests, cropland, and urban regions. The highest concentration
level of PM2.5 (84 µg/m3) among other land use classes was found in urban areas in 2021. The
regression analysis shows that air pressure (hPa) (r2 = −0.26), evaporation (kg m−2) (r2 = −0.01),
humidity (kg m−2) (r2 = −0.22), rainfall (mm/h) (r2 = −0.20), and water vapor (kg m−2) (r2 =−0.03)
were negatively correlated with PM2.5. On the other hand, air temperature (k) (r2 = 0.24), ground heat
(W m−2) (r2 = 0.60), and wind speed (m s−1) (r2 = 0.34) were positively correlated with PM2.5. More
than 60 Upazilas were included in the most polluted areas, with a total population of 11,260,162 in
the high-risk/hotspot zone (1,948,029 aged 0–5, 485,407 aged 50–69). Governmental departments
along with policymakers, stainable development practitioners, academicians, and others may use the
main results of the paper for integrated air pollution mitigation and management in Bangladesh as
well as in other geographical settings worldwide.
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1. Introduction

Ambient air pollution is one of the biggest environmental threats to public health,
resulting in around 4.2 million global deaths yearly [1,2]. Rapid urbanization and swift in-
dustrialization are boosting the global economy, resulting in environmental pollutions [3,4].
Infrastructural damage to ecological balance is happening at an alarming rate because
of uncontrolled air pollution worldwide, especially in South Asian and East Asian cities.
Additionally, air pollution is attributed to a significant amount of economic costs in de-
veloping countries [4,5]. Furthermore, air pollution is also the fifth leading risk factor for
mortality worldwide, accounting for more deaths than many better-known risk factors
such as malnutrition, drug addiction, and obesity [6]. The average air quality index is very
alarming in some major cities in Bangladesh [7–9]. The air pollution level in Dhaka and its
suburban areas is very severe as it is ranked as the second most polluted city in the world
in terms of air pollution [10–12]. Dhaka is also considered one of the most polluted cities in
the world, with an 82 µg/m3 annual average PM2.5 concentration from a wide variety of
pollution sources [13–15].
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Air pollution is a major environmental and public health issue in South Asian coun-
tries due to climate change and different anthropogenic causes including rapid urban-
ization, industrialization, and transportation growth. Numerous studies have been con-
ducted in the region to assess air quality, identify sources of pollution, and evaluate
health impacts [16–19]. On the other hand, the main reasons for air pollution in European
countries are mainly emissions from transportation (road vehicles, airplanes, and ships),
industrial activities (power generation, manufacturing, and construction), agriculture (live-
stock, fertilizer use, and manure storage), residential heating and cooking (use of fossil
fuels), and natural sources (dust and wildfires) [20–22]. Other factors that contribute to air
pollution in Europe include weather conditions, topography, and the presence of pollu-
tants in imported goods. Climate change also exacerbates air pollution by increasing the
frequency and intensity of wildfires and worsening weather conditions that trap pollutants
in the atmosphere [23–28].

PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm) is one of
the major air pollutants in city areas and is a significant threat to human health and all
living organisms [29,30]. It is revealed that the key reasons for this upsetting air quality in
Dhaka and its adjacent areas are mainly unplanned urbanization, industrialization, and
motorization. A large share (almost 58% of total PM2.5) of Dhaka’s air pollutants can be
attributed to brick kilns operating in and around Dhaka, and significant contributions
are also found for motor vehicles (10.4%), road dust (7.70%), fugitive Pb (7.63%), soil
dust (7.57%), biomass burning (7.37%), and sea salt (1.33%) [7]. Furthermore, the fuel
used by brick kilns operating in this area is mainly coal, while wood is being used as a
secondary fuel; the combination of these fuel sources ultimately contributes to almost two
thirds of the PM2.5 found in the air of Dhaka [7,31,32]. However, Western countries have
suggested that the level of PM2.5 concentration should be reduced on both a daily and
annual basis [33]. In contrast, developing countries like Bangladesh still emit higher levels
of PM2.5 concentration in the atmosphere. Moreover, regarding loss of human health and
life, the cost in terms of capital alone every year is more than USD 1.59 billion, equivalent
to BDT 134 billion [34].

Many researchers have completed research on the relationship between PM2.5 and land
use. The authors of [35] conducted a sampling-based study to determine the atmospheric
PM2.5 concentration in the Gazipur and Mymensingh districts in Bangladesh, where they
found an increased level of pollutants in February 2019 because of different factors such as
industrial activities, vehicular emissions, and construction. The study’s main limitation
was that it used a small number of sample points that did not represent the whole study
area, thus leading to a lack of precision. The authors of [36] conducted a spatiotemporal
analysis of PM2.5 concentration and quantified the relationship between vegetation cover
and air pollution in greater Dhaka, Bangladesh. Their results showed that the winter season
experienced the highest concentration of PM2.5, and the amount of PM2.5 increased over
time. These studies revealed that vegetation cover and PM2.5 concentration exhibited a
strong negative correlation (r2 = −0.75). The lack of proper land use information and
the limited number of sample points did not allow for an appropriate relationship to
be obtained, which is the opposite of our paper. On the other hand, the authors of [37]
concluded research that found that artificial surfaces and desert land have positive effects
on PM2.5 concentration, while forest, grassland, and barren land have negative effects on
PM2.5 concentration.

Climatic variables have an important role in assessing PM2.5 in rural and urban
areas. The authors of [38] conducted research on the relationship between PM2.5 and
seasonal meteorological factors in Dhaka, Bangladesh, where they found that rainfall and
temperature had a negative association with PM2.5. Rainfall was also negative in Dhaka [11].
Long-term PM2.5 links with temperature, surface pressure, and relative humidity were
studied by [32] in Dhaka, Bangladesh, using temporal air pollutant data from 2003 to
2019. Their results show that Pearson’s correlations were significantly associated with
surface pressure and relative humidity, while there was a positive correlation with surface
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temperature. Their key findings also revealed that vehicular emissions, road dust, soil dust,
biomass burning, and industrial emissions contributed to PM2.5. Temperature, wind speed,
and wind direction significantly predict PM2.5 in Dhaka, Bangladesh. Ref. [39] completed
research to investigate the statistical relationship between PM2.5 and temperature, wind
speed, and wind direction. Based on the literature review above, most of the studies used a
limited number of sample points of PM2.5 with a few climatic variables. In addition, most
of the research used small geographic areas. As a result, the relationship between PM2.5
with land use and several climatic variables in larger geographic areas is still unknown. To
fill this knowledge gap, this paper has conducted this study using a series of multi-date
PM2.5 data, land use, and eight climatic variables in large geographic areas (6043 km2).
Finally, this paper aims to investigate the relationship between PM2.5 and land use and
climatic variables and to identify the riskiest areas and population groups using geographic
information systems and statistical analyses.

2. Study Location

The study area of this research is located in the Dhaka division covering its five
major industrial districts (Dhaka, Narayanganj, Munshiganj, Narshingdi, and Gazipur)
of Bangladesh. The entire area lies between 23◦20′00′′ N and 24◦20′00′′ N latitudes and
between 90◦00′0′′ E and 91◦00′0′′ E longitudes, which covers about 6,043 km2 housing
almost 22 million people [40] (Figure 1). Having a tropical wet and dry climate, the study
area has an annual average rainfall of 1,854 mm with an annual average temperature
of 25 ◦C. The study area was selected for some pragmatic reasons: (a) colossal popula-
tion pressure, (b) massive industrial activities, (c) higher level of traffic concentration,
(d) internal migration, and (e) unplanned urban activities, which are the key controlling
factors for its local and regional atmospheric conditions [11,41–43]. Ref. [44] mentioned
that this area has high concentrations of industrialization due to easily accessible financial
resources, enormous transportation networks, location-based advantages, spatial contexts,
and different management services.

Figure 1. The location map of the study area shows topographic and population information.
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3. Materials and Methods

The main methodological steps within a systematic framework which were followed
(Figure 2) for completing this study are described below:

Figure 2. Major methodological steps of this research work.

For this study, the concentrations of PM2.5 were collected between 2002 and 2021 from
two sources (Table 1) and were used as the main dependent variable for analysis. Nine
diverse types of independent variables collected from several satellite sensors were used
in this study (Table 1). Land use, air pressure, air temperature, evaporation, ground heat,
humidity, rainfall, water vapor, and wind speed were downloaded for 2021. Raster-based
population data were collected from the WorldPop website with values ranging from 0 to
5, 50 to 69, and total population, were used to map the most affected people within each
area [45]. The variable characteristics of both dependent and independent variables are
described in Table 1.

Table 1. The variable names, sources, and the characteristics of independent and dependent variables
used in the paper.

Theme Name Unit Source Time of Data Collection

Independent variables
(Air pollutants)

Air Pressure hPa https://disc.gsfc.nasa.gov/datasets/M2
TMNXSLV_5.12.4/summary 20 December 2021

Air Temperature k https://disc.gsfc.nasa.gov/datasets/
NCALDAS_NOAH0125_D_2.0/summary 15 December 2021

Evaporation kg m−2 https://disc.gsfc.nasa.gov/datasets/M2
TMNXLND_5.12.4/summary 20 December 2021

Ground Heat W m−2 https://disc.gsfc.nasa.gov/datasets/
NLDAS_NOAH0125_M_2.0/summary 20 December 2021

Humidity kg m−2 https://disc.gsfc.nasa.gov/datasets/
NLDAS_FORA0125_H_2.0/summary 15 December 2021

Rainfall mm/h https://disc.gsfc.nasa.gov/datasets/
TRMM_3B43_7/summary 15 December 2021

Water Vapor kg m−2 https://disc.gsfc.nasa.gov/datasets/
AIRX3STM_7.0/summary 20 December 2021

Wind Speed m s−1 https://disc.gsfc.nasa.gov/datasets/M2
TMNXFLX_5.12.4/summary 20 December 2021

Land Use Class http://www.globallandcover.com/ 20 December 2022

Dependent variables PM2.5 (µg/m3)
https://ads.atmosphere.copernicus.eu/
https://disc.gsfc.nasa.gov/datasets/M2

TMNXAER_5.12.4/summary
2002–2021

https://disc.gsfc.nasa.gov/datasets/M2TMNXSLV_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2TMNXSLV_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/NCALDAS_NOAH0125_D_2.0/summary
https://disc.gsfc.nasa.gov/datasets/NCALDAS_NOAH0125_D_2.0/summary
https://disc.gsfc.nasa.gov/datasets/M2TMNXLND_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2TMNXLND_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/NLDAS_NOAH0125_M_2.0/summary
https://disc.gsfc.nasa.gov/datasets/NLDAS_NOAH0125_M_2.0/summary
https://disc.gsfc.nasa.gov/datasets/NLDAS_FORA0125_H_2.0/summary
https://disc.gsfc.nasa.gov/datasets/NLDAS_FORA0125_H_2.0/summary
https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary
https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary
https://disc.gsfc.nasa.gov/datasets/AIRX3STM_7.0/summary
https://disc.gsfc.nasa.gov/datasets/AIRX3STM_7.0/summary
https://disc.gsfc.nasa.gov/datasets/M2TMNXFLX_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2TMNXFLX_5.12.4/summary
http://www.globallandcover.com/
https://ads.atmosphere.copernicus.eu/
https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary
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3.1. Image Processing and Data Analysis

After collecting all the raster-based data, data masking, resizing, and other image-processing
tasks were completed. These tasks were needed to prepare the final output of each variable
for further spatial analysis [46,47]. Due to wide-ranging data values for each variable, all
the values were normalized using the z-score normalization process [48]. The equation
below was used to normalize the data values:

xnew =
x− µ

σ
(1)

where xnew = data vector after scaling, x = original data, µ = mean of the data vector,
σ = standard deviation of the data vector.

3.2. PM2.5 Analysis

The temporal analysis of PM2.5 was completed in ArcGIS v. 10.8. The mean, minimum,
and maximum values of the yearly PM2.5 data values were also calculated and graphed in
Microsoft Excel to differentiate the temporal variations of PM2.5.

3.3. Risk Modeling Using Hotspot Area

To identify the most risk-prone areas, hotspot analysis was conducted in this study
using the temporal PM2.5 database. It is a widely used tool to analyze the most concentrated
areas of PM2.5 in air pollution research [49–52]. The main equation used for the calculation
of a hotspot is below:

G∗i =
∑n

j=1 wi,jxj − X ∑n
j=1 wi,j

s

√ [
n ∑n

j=i w2
i,j−

(
∑n

j=1 wi,j

)2
]

n−1

(2)

where xj is the value of j, wi,j is the spatial weight between feature i and j, n is equal to

the number of features, X =
∑n

j=1 xj
n , and s =

√
∑n

j=1 x2
j

n −
(
X
)2. A Getis–Ord Gi

* produces
z-scores and p-values. Areas with higher z-scores and smaller p-values signify a cluster
of the hottest spots while a negative z-score and a small p-value represents the coldest
areas [53].

3.4. Regression Analysis

A linear regression was used in this paper to find out the internal relationships among
the different variables. A correlation analysis is the most useful tool in understanding
the positive and negative relationships among the variables or factors contributing to air
pollutants [50,54]:

y = mx + b (3)

where y = dependent variable (PM2.5), m = regression slope, x = independent variable, and
b = constant [55].

3.5. Raster Overlay Analysis

The final risk map of PM2.5 was overlaid with the population data to determine the
spatial distribution of the most affected age groups in the study area.

4. Results
4.1. Descriptive Analysis of PM2.5

Figure 3 highlights the minimum, maximum, and mean values of PM2.5 pollution
levels by 4-year intervals in the study area from 2002 to 2021. It is revealed that, during
the 19-year period, there was an overall increase of about 41% in PM2.5 levels in the area.
The annual trends of PM2.5 varied over time, with increases of 4.58% (µg/m3) from 2002
to 2006, 0.82% (µg/m3) from 2007 to 2011, 4.03% (µg/m3) from 2012 to 2016, and 3.47%
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(µg/m3) from 2017 to 2021. The minimum values of PM2.5 increased by 55% to 78% (µg/m3)
from 2012 to 2021, while the maximum values showed significant variation from 2002 to
2021. The highest values of PM2.5 were found from 2012 to 2021. Furthermore, the study
found an upward trend in the mean values of PM2.5 from 2007 to 2016, and these values
exceeded the annual standard limit set by the World Health Organization (WHO) for PM2.5
(15 µg/m3) in Bangladesh. Overall, these findings suggest a concerning trend of increasing
PM2.5 pollution levels in the study area over the past two decades, with potential health
implications for the local residents.

Figure 3. Temporal analysis of minimum, maximum, and mean PM2.5 from 2002 to 2021.

4.2. Relationship between PM2.5 and Land Use

The results presented in Figure 4 indicate that the concentration of PM2.5 varies
significantly across different land use classes in the study area. Barren lands, forests,
croplands, and urban areas were found to have the highest concentrations of PM2.5, with
varying degrees of increase over the years. Barren lands, for instance, found an increase of
64% in PM2.5 concentration (µg/m3) from 2002 to 2021, while forest areas had an increase
of 62.75%. The largest land use class in the study area, croplands, also showed a significant
increase (57.70% from 2002 to 2021) in PM2.5 concentration. Urban land, which is the
dominant land use class in the study area, had an increase of 55.6% in PM2.5 concentration
(µg/m3) over the same time period, with the highest PM2.5 concentration level of 84 µg/m3

found in urban areas in 2021. These findings highlight the need for targeted interventions
and pollution control measures in different land use classes to reduce PM2.5 concentration
and mitigate its adverse effects on human health and the environment.

4.3. Relationship between PM2.5 and Climatic Variables

A spatial relationship between the estimated PM2.5 and climatic variables was con-
ducted using a linear regression model. The regression analysis showed that air pressure
(hPa) (r2 = −0.26, Figure 5a) and evaporation (kg m−2) (r2 = −0.01, Figure 5c) were nega-
tively correlated with PM2.5 (Figure 5). On the other hand, air temperature (k) (r2 = 0.24,
Figure 5b) and ground heat (W m−2) (r2 = 0.60, Figure 5d) were positively correlated with
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PM2.5. It means that if air pressure is higher and evaporation is higher, these two factors
may contribute to generating less PM2.5. Alternatively, higher air temperature (k) and
ground heat (W m−2) may generate higher PM2.5.

Figure 4. Relationship between temporal PM2.5 and different land use classes.

Figure 5. Regression between PM2.5 and climatic variables, (a) air pressure (hPa), (b) air temperature
(k), (c) evaporation (kg m−2), and (d) ground heat (W m−2).

The regression analysis (Figure 6) also revealed that humidity (kg m−2) (r2 = −0.22,
Figure 6a), rainfall (mm/h) (r2 = −0.20, Figure 6b), and water vapor (kg m−2) (r2 = −0.03,
Figure 6c) were correlated negatively with PM2.5, while wind speed (m s−1) correlated
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positively (r2 = 0.34, Figure 6d). It means if the humidity is high, rainfall is higher, and
water vapor is higher; these factors may contribute to generating less PM2.5. On the other
hand, higher wind speed may cause higher PM2.5.

Figure 6. Regression between PM2.5 and climatic variables, (a) humidity (kg m), (b) rainfall (mm/h),
(c) water vapor (kg m−2), and (d) wind speed (m s−1).

4.4. Hotspot Zoning

The average annual values of PM2.5 from 2002 to 2021 were used to identify the most
pollutant and affected areas in the study area (Figure 7). From the analysis, it was observed
that 60 Upazilas within five districts were the most polluted areas. The annual PM2.5
values in Dhaka were 65 to 67 µg/m3, while 62–65 and 60–66 µg/m3 were the values
in the Narayanganj and Gazipur districts. Similarly, Narshingdi and Munshiganj were
from 61 and 64 µg/m3. However, all of the values exceed the WHO’s standard value of
15 µg/m3. Dhaka, the central part of the study area, had more signs of air pollution than
other parts of the study area. The southern parts are affected by substantial industrial and
development activities, while the northern parts are concentrated slowly because of less
commercial and industrial activities than other parts of the study area (Figure 7).

Figure 7. The average concentration of PM2.5 from 2002 to 2021. Red is the most affected area, while
gray is the significantly less-affected areas.
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4.5. Affected Population Due to PM2.5

The resultant hotspot map, created using all the mean values from 2002 to 2021,
was used to demarcate the vulnerable residents in the study area. The hotspot map was
analyzed with the Upazila-wise population data to estimate the vulnerable people within
the 0–5 and 50–69 age groups. Table 2 shows that 19,48,029 and 485,407 populations of
0–5 and 50–69, respectively, are living in the high-hotspot area. It is also found that most of
the high-hotspot areas are located in urban areas with higher population densities. In the
medium-hotspot areas, 22% and 7% of the residents within 0–5 and 50–69 years old were
found, respectively, while 523,128 and 181,445 populations of 0–5 and 50–69 years old were
found in the low-hotspot areas.

Table 2. Spatial correlation between population and hotspot areas.

PM2.5 (Annual) 0–5 Age 50–69 Age Total Population

High-hotspot area (65 µg/m3) 1,948,029 485,407 11,260,162
Medium-hotspot area (50 µg/m3) 1,231,066 370,124 5,720,467

Low-hotspot area (45 µg/m3) 523,128 181,445 2,343,643

5. Discussion

Estimating the spatiotemporal concentration of PM2.5 is a critical issue for local and
regional atmospheric pollution research and public health concerns. This study used a set of
PM2.5 concentration data to map the hotspot areas and analyze the statistical relationships
between land use and eight climatic variables. In addition, the derived PM2.5 data was
used to explore the areas that are affecting the most number of residents. It was found that,
similar to the study area, cities within had similar urbanization patterns and the average
PM2.5 value in 2021 (82 µg/m3 in China vs. 77 µg/m3 in Bangladesh). In Bangladesh, about
35% of the ambient PM2.5 and 15% of the PM2.5 are generated from brick kiln emissions
and transportation systems [8,56,57]. Emissions from various kinds of poorly maintained
vehicles using diesel and petrol are generating PM2.5 pollutants in the urban areas of
Bangladesh [58,59].

The concentration of PM2.5 in the atmosphere depends on several anthropogenic
factors such as transportation (vehicle movements), industrial (manufacturing plants and
mining), cooking and heating activities [60], and some meteorological factors like wind
speed, air relative humidity, cloud cover, and ambient temperature [3]. The results of
this study revealed that the areas, i.e., Dhaka, Narayanganj, and Gazipur districts, have
more anthropogenic sources like manufacturing factories, high traffic congestion, and
other combustion activities, ultimately leading to these districts having relatively higher
annual PM2.5 concentrations, similar to the urban areas of India, Tanzania, and Iran [61–63].
In contrast, the other two study areas, Narshingdi and Munshiganj, have a relatively
lower level of PM2.5 concentration and can be compared to the values found in cities
of European countries [64]. However, the incorporation of meteorological factors and
seasonal variations could give more precise information about the concentration of PM2.5
fluctuation instead of depending on annual average concentration, which could sometimes
be misleading in describing short-term anthropogenic activities or weather conditions [65].
Several studies [66–70] found that the industrial sector is one of the major contributors to
PM2.5 emissions. In many regions, industrial activities release large amounts of pollutants,
including PM2.5, into the atmosphere. Also, urban transportation is another significant
source of PM2.5 emissions. Exhaust fumes from vehicles emit PM2.5 particles that can
contribute to the overall air pollution levels. Different agricultural activities such as burning
crop residues and fertilizing fields can also contribute to PM2.5 emissions. In addition to
this, residential and commercial activities such as burning solid fuels for heating and
cooking can also release PM2.5 into the atmosphere.

Land use has an important role in changing the nature and pattern of PM2.5. This
paper has explored that the highest levels of PM2.5 concentrations and their annual pat-
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terns has been increasing over barren lands, forests, cropland, and urban areas between
2002 and 2021 because of urbanization, huge construction sites, road networks, indus-
trial activities, agricultural practices, traffic congestions, and impervious surfaces. The
relationship between PM2.5 and different land use patterns is complex, comprehensive,
and dynamic. Van et al. [35] mentioned that vehicle emissions, brick kilns emissions, and
industrial smoke are the key factors for environmental problems and public health risks,
particularly PM2.5 pollution in the Ghazipur and Mymensingh districts of Bangladesh.
Yang et al. [71] also indicated that the dominant factor affecting PM2.5 pollution was the
traffic conditions found using a land use regression (LUR) model and statistical analysis to
explore the effect of land use on PM2.5 pollution in the Nanchang urban area, China. Urban
areas are more vulnerable to atmospheric inversion, which may trap different air pollutants
close to the ground and increase their density or concentration over time. The combination
of these factors, the high population density, and their energy consumption are the vital
triggering factors for influencing PM2.5 in many ways. On the other hand, forest/vegetation
can play a crucial role in producing and reducing PM2.5 on the local atmosphere. Some
specific trees or vegetation can directly absorb PM2.5 and other particulate matter, even if
they filter the air naturally by releasing clean air. Often trees and vegetation reduce wind di-
rection which can help the circulation of PM2.5 from one area to another. Kulsum et al. [36]
mentioned that the vegetation cover and PM2.5 concentration have a strong negative cor-
relation (r2 = −0.75). This means that the higher vegetation will reduce the level of PM2.5
concentration in Bangladesh. This phenomenon was also observed by [72] where the forests
experienced a PM2.5 of 35–50 µg/m3 (lower than other land cover types), likely due to the
potential filtering and absorption function of the forests and vegetation. Different land uses
have an impact on PM2.5 levels in several ways. Urban areas with high levels of traffic and
industrial activity can produce more PM2.5 than rural areas [73]. Additionally, land use
practices such as deforestation and farming can also contribute to rising PM2.5 levels. For
example, burning of biomass and crop residues can lead to increased levels of PM2.5. To
reduce PM2.5 levels, land use management practices that minimize activities that produce
PM2.5 and increase vegetation cover should be implemented [74–76].

The dispersion and transportation of PM2.5 are affected by local and regional climatic
factors. The local and regional climatic factors such as air pressure, air temperature, evapo-
ration, ground heat, humidity, rainfall, water vapor, and wind speed have a daily, monthly,
and annual contribution in increasing or decreasing the PM2.5 values. Afrin et al. [39]
mentioned that wind speed (m s−1) and direction did not significantly influence PM2.5,
although other wind parameters have the highest variability. However, this study found
that wind speed (m s−1) has a positive correlation (r2 = 0.34) while air pressure (hPa) has
a negative (r2 = −0.24) correlation. Faisal et al. [38] found that the Pearson correlation
coefficient (r) between the PM2.5 and meteorological variables was negative with rainfall
(mm/h) (r2 = −0.62) and humidity (kg m−2) r2 = (−0.82) but positive with wind speed
(m s−1) (r2 = 0.09) and air temperature (k) (r2 = −0.73) in Dhaka, Bangladesh. In addition, a
Pearson correlation revealed a significant association among the pollutants, while a signifi-
cant correlation was observed between PM2.5 and surface temperature (k), which is similar
to our paper’s results. Pavel et al. [32] mentioned that surface temperature (k) is signified
because of vehicular emissions, road/soil dust, biomass burning, and industrial emissions
in Dhaka, Bangladesh. Tai et al. [77] also argued that meteorology parameters such as
temperature, relative humidity (RH), and precipitation are important predictors for PM2.5
variability all over the USA. Huang et al. [78] found that the annual mean and median
of PM2.5 concentrations were 88.07 µg/m3 and 71.00 µg/m3, respectively, from August
2013 to July 2014. PM2.5 concentration was significantly higher in winter (p < 0.0083) and
in the southern part of the city (p < 0.0167). Moreover, the day-to-day variations of PM2.5
showed a long-term trend of fluctuations, with 2–6 peaks each month. PM2.5 concentration
was significantly higher during the night than the day (p < 0.0167). They also mentioned
that the meteorological factors were associated with daily PM2.5 concentration using the
GAMM model (r2 = 0.59, AIC = 7373.84). On the other hand, Razib et al. [11] indicated
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that the rainfall (mm/h) was strongly negatively and significantly correlated with the
concentration of PM2.5, due to the ambient dust that settle down in the lithosphere. The
annual concentration of PM2.5 was five times higher than the standard level in Dhaka,
Bangladesh. The correlation analysis results between PM2.5 concentration and meteoro-
logical data showed that air temperature (k) had negative correlations while precipitation
(mm/h) had positive correlations with PM2.5 [79]. They found a threshold in the correlation
between humidity (kg m−2), wind speed (m s−1), and PM2.5. The correlation was positive
or negative depending on the meteorological variable values. From the relationship with
wind direction, it can be depicted that the west wind might bring the most pollutants
to Nagasaki.

The higher concentration of PM2.5 and its adverse effects on urban communities
and inhabitants are exposed as a common public health problem in Bangladesh. Most
public health concerns are pulmonary, cardiovascular, cancer, diabetes, chronic respiratory
infection, low birth weight, and premature deaths [80]. In this study, almost 2 million
children (between 0 and5 years old) and almost 0.5 million elderly people (between 50 and
69 years old) were found to be at risk due to the higher level of PM2.5. In China, 341,701
and 67,325 premature deaths were recorded due to stroke and lower respiratory infection,
respectively [81]. Almost 25 million people are at risk of air pollution in Delhi, India, due
to different human, societal, developmental, and industrial reasons [82]. These reasons are
identified as similar problems for this study area too.

6. Conclusions

This paper investigated the relationship between PM2.5 and land use and climatic
variables and tried to identify the most vulnerable areas and population groups using
geographic information systems and statistical analyses. Finally, the results derived from
the study show that land use and climatic variables are significantly associated with PM2.5
in the study area. A proper mitigation plan considering the main outcomes of the paper is
suggested to reduce the over-concentration of PM2.5. However, the critical summaries of
the paper are as follows:

• About 41% of PM2.5 concentration (µg/m3) has increased between 2002 and 2021 in
the study area.

• The highest concentration of PM2.5 was found between 2012 and 2021.
• The concentrations of PM2.5 were higher over barren lands, forests, croplands, and

urban areas. About 64%, 62.7%, 57%, and 55% concentrations (µg/m3) have increased
over barren lands, forests, cropland, and urban areas between the study period.

• The highest concentration level of PM2.5 (84 µg/m3) was found in urban land in 2021.
• The regression analysis showed that air pressure (hPa) (r2 = −0.26), evaporation

(kg m−2) (r2 = −0.01), humidity (kg m−2) (r2 = −0.22), rainfall (mm/h) (r2 = −0.20),
and water vapor (kg m−2) (r2 = −0.03) were negatively correlated with PM2.5.

• On the other hand, air temperature (k) (r2 = 0.24), ground heat (W m−2) (r2 = 0.60,
Figure 5d), and wind speed (m s−1) (r2 = 0.34) were positively correlated with PM2.5.

• More than 60 Upazilas with a total population of 11.3 million containing almost
2 million children and 0.5 million elderly people were found to live amongst the most
polluted areas and were in the high-risk/hotspot zone.

The outcomes and gained knowledge of this study will be useful for local and regional
governments, the United Nations, and International Non-Governmental Organizations
for making any health and environmental policies and action plans. The maps and data
derived from this study could be used for taking location-based interventions to reduce
PM2.5 in the study area as well as in other cities in South Asia. Organizations and people
who will work on this specific issue can use these results as baseline information, due to
the lack of pixel-based PM2.5 data, in their new project formation and relevant intervention
design. Future studies will consider multi-dimensional sessional data of PM2.5 and other
topographic and metrological variables to mitigate PM2.5 pollution.
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