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Abstract: Air pollution (AP) is a significant risk factor for public health, and its impact is becoming
increasingly concerning in developing countries where it is causing a growing number of health
issues. It is therefore essential to map and monitor AP sources in order to facilitate local action against
them. This study aims at assessing the suitability of Sentinel-5 AP products based on Google Earth
Engine (GEE) to monitor air pollutants, including CO, NO2, SO2, and O3 in Arak city, Iran from 2018
to 2019. Our process involved feeding satellite images to a cloud-free GEE platform that identified
pollutant-affected areas monthly, seasonally, and annually. By coding in the JavaScript language in the
GEE, four pollution parameters of Sentinel-5 satellite images were obtained. Following that, images
with clouds were filtered by defining cloud filters, and average maps were extracted by defining
average filters for both years. The employed model, which solely used Sentinel-5 AP products, was
tested and assessed using ground data collected from the Environmental Organization of Central
Province. Our findings revealed that annual CO, NO2, SO2, and O3 were estimated with RMSE
of 0.13, 2.58, 4.62, and 2.36, respectively, for the year 2018. The annual CO, NO2, SO2, and O3 for
the year 2019 were also calculated with RMSE of 0.17, 2.41, 4.31, and 4.6, respectively. The results
demonstrated that seasonal AP was estimated with RMSE of 0.09, 5.39, 0.70, and 7.81 for CO, NO2,
SO2, and O3, respectively, for the year 2018. Seasonal AP was also estimated with RMSE of 0.12,
4.99, 1.33, and 1.27 for CO, NO2, SO2, and O3, respectively, for the year 2019. The results of this
study revealed that Sentinel-5 data combined with automated-based approaches, such as GEE, can
perform better than traditional approaches (e.g., pollution measuring stations) for AP mapping and
monitoring since they are capable of providing spatially distributed data that is sufficiently accurate.
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1. Introduction

In today’s world, air pollution (AP) is one of the most destructive challenges to the
quality of life, especially in developing countries [1]. With the rapid expansion of urbaniza-
tion and the development of cities, along with rapid population growth, industrialization,
and the indiscriminate use of fossil fuels, pollution has increased and exceeded the capacity
of the environment to tolerate it [2,3]. As a result, citizens are more likely to suffer from
respiratory diseases and suffer from worsened heart and lung conditions. Furthermore,
environmental damage, including damage caused by air pollution, costs billions of dollars
every year in financial credits, human labor, and other resources [4–6].

In recent years, AP has become a leading cause of death in both developing and
developed countries [7]. In this regard, the amount of air pollutants in many cities in
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Iran has reached dangerous levels, including in Tehran, Mashhad, Isfahan, Tabriz, Shiraz,
Karaj, Arak and Ahvaz [8–11]. Among the various sectors that pollute the air in Iran, the
transportation and industry sectors both generate the most pollution; the transportation
sector alone emits 63.3% of the total nitrogen oxide emissions, 29.3% of sulfur dioxide
emissions, 27.5% of carbon dioxide emissions, 24.8% of sulfur trioxide emissions, 98.6% of
carbon monoxide emissions, 96.3% of carbon hydride emissions, and 79.2% of suspended
particles. Tehran’s air pollution, for instance, is linked to 70% of deaths, according to studies
by the Environmental Organization [12,13].

Pollution measuring stations are one of the most accurate methods of measuring
pollution. However, measurements are limited to the area around the stations [14,15].
Because of their high installation and maintenance costs, this solution is not widely used
in managing and monitoring pollution. By relying solely on ground values, complex air
pollution models that include things such as the source, movement path, and chemical
characteristics of different types of pollution also have problems [16]. Measurements from
pollution stations provide accurate and temporally discrete AP information; however,
these measurements are often affected by significant errors associated with them and often
result in unrepresentative spatial patterns [17]. Additionally, as temporal resolution and
temperature extremes increase, the complexity of AP patterns increases. It is, thus, necessary
to use remote sensing methods that have acceptable temporal and spatial resolution in
order to overcome these problems [18,19]. In this regard, Sentinel satellites have provided
key information in various fields of global monitoring for environmental management
programs, understanding and dealing with the effects of climate change, water resources
management, hydrology, monitoring the expansion and change of megacities, forests,
and agricultural areas, and monitoring plant productivity and health [20–22]. Sentinel-5
is the first mission of the Copernicus air pollution control program. Sentinel-5 can be
used for identifying ozone, methane, formaldehyde, aerosol, carbon monoxide, NO2,
and SO2 gases [23]. Satellite images from Sentinel-5 can be effective in investigating the
spatial distribution of pollutants due to their large and global observations of the Earth’s
surface. As part of Sentinel-5, the TROPOMI (TROPOspheric Monitoring Instrument)
sensor provides daily data on air pollution [24]. There is a wide range of pollutants that
can be monitored and imaged using the TROPOMI sensor. There are three different ways
to obtain images of these pollutants: real-time images, offline images, and reprocessing
images. Almost instantaneous data is available within three hours of data acquisition, and
offline data is available several days after imaging [25].

With improvements in the variety and resolution of remote sensing data, various semi-
automated and automated methods have been developed, such as Google Earth Engine [26].
GEE is an online computing platform that processes satellite images, spatial data, and
geographical data at the petabyte scale [27]. This web-based system provides access to
satellite data processing software and algorithms [28]. The GEE makes it relatively easy
to access satellite data and other information, cloud computing, and big data processing
algorithms [29,30]. The GEE system provides researchers with easy and high-speed access
to over thirty years’ worth of free and public data archives, including old images and
scientific datasets for large-scale sensing applications [31]. In this way, many limitations
related to downloading, storing and processing data are easily overcome [32]. Several
researchers have employed GEE for AP retrieval [33–39].

A review of the literature reveals that few studies have explored the effectiveness of
Sentinel 5 images based on GEE for AP retrieval. A primary focus of Sentinel-5 is the study
of air quality and composition-climate interactions with the main data products being O3,
NO2, SO2, HCHO, CHOCHO, and aerosols. Furthermore, Sentinel-5 will provide daily
global coverage for climate, air quality, and ozone/surface applications of CO, CH4, and
stratospheric O3 [25–40]. Previous studies also mapped and monitored some specific air
pollutants, such as O3. Therefore, this study aims: (1) to monitor CO, NO2, SO2, and O3
pollutants in Arak city in the period of 2018 and 2019, (2) to evaluate the effectiveness of
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Sentinel-5 images for CO, NO2, SO2, and O3 pollutants monitoring, and (3) to explore the
efficiency of GEE for AP retrieval.

2. Location of Study Area

Arak city, the capital of the Central Province is located in the central part of Iran
(Figure 1). As one of Iran’s major manufacturing cities, Arak is widely regarded as one
of the four economic poles of the country. This city is the industrial capital of Iran due to
the presence of mother industries, the production of 80% of the country’s energy equip-
ment, and the presence of the biggest aluminum factory, the biggest manufacturer of
heavy machinery in the Middle East, the largest gasoline producer, and the largest min-
eral industries in the country. As a result, it is one of the most polluted cities in Iran
(https://markazi.doe.ir, accessed on 1 February 2022). According to the output factors
described in Table 1, the fuel consumption of large industries in Arak city and the air
pollution caused by this have been estimated based on the available information. Because
Arak is one of the most important industrial cores in Iran, fuel consumption in various
seasons does not differ significantly from each other [41].

Figure 1. Location of study area, (1) in Iran, (2) Markazi province, and (3) different areas in Arak city.
(4–6) are examples of observed air pollution in Arak city.

Table 2 shows that other motor vehicles and heating sources contributed less pollution
than industries. As shown in Table 1, industries produced 99% of Arak’s air pollution, and
the number of pollutants was high as well.

https://markazi.doe.ir
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Table 1. Polluting substances in Arak city (in tons per year) caused by fuel consumption in indus-
trial factories.

Fuel Type Amount in
Cubic Meters (m3)

Carbon
Monoxide (CO)

Sulfur
Dioxide (SO2)

Nitrogen
Oxides (NOx)

Hydrocarbonate
(HC)

Kerosene 388,610 22 0.98 0.58 0.13

Fuel oil 12,728,789 6.2 565 88.46 4.15

Gasoline 34,458,613 930 390 15,000 148

Burner fuel 166,195 5.3 3.7 9.1 0.68

Natural gas 2,898,477 780 - 8700 -

Total 50,640,684 1721.7 959.59 10.298 153.140

Table 2. Polluting substances in Arak city (in tons per year) produced by motor vehicles and
heating sources.

Contaminating Sources CO SO2 NOx HC

Gasoline cars 12,420 33 190 1536

Motorcycle 10,044 - - 3487

Diesel cars 3100 15 117 391

Home heating sources 557 297 926 95

Industrial fuel consumption 942,500 959,590 1,606,840 153,140

Refinery production process 314,766 30,707 5823 18,962

Total 1,283,387 990,642 1,613,896 177,611

3. Datasets and Methodology
3.1. Datasets

The main objective of this study was to monitor trends in CO, NO2, SO2, and O3
pollutants in Arak city using time-series Sentinel-5 images derived from GEE. To this
end, Sentinel-5 AP were employed to monitor CO, NO2, SO2, and O3 pollutants based on
GEE from 2018 to 2019. We also used monthly, seasonal (spring (April, May, and June),
summer (July, August, and September), fall (October, November, and December), and
winter (January, February, and March)), and annual data on atmospheric pollutants for
AP monitoring, collected from the Environmental Organization of Central Province for
2018 and 2019 (Table 3). Figure 1(3) shows the location of pollution monitoring stations in
Arak city.

Table 3. The annual air pollution data (ppm) in Ostandari, Shariati, and Mokhaberat stations from
2018 to 2019.

Name of Station 2018

CO NO2 SO2 O3

Ostandari 2.97 22.33 6.15 1.25

Shariati 2.36 16.99 25.38 22.54

Mokhaberat 2.41 2.28 4.18 1.02

2019

CO NO2 SO2 O3

Ostandari 2.96 2.51 25.14 21.58

Shariati 2.26 15.69 39.29 60.06

Mokhaberat 2.25 22.36 26.78 22.03
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3.2. Methodology

To extract pollution maps (CO, NO2, SO2, and O3), the following steps were taken: in
the first step, all satellite-based datasets were preprocessed and prepared. Second, results
for air pollutants were obtained through JavaScript coding using GEE. As a third step, GEE
and Sentinel-5 results were validated based on data from pollution measuring stations.
Figure 2 provides a brief review of the methodology used for AP retrieval.

Figure 2. An overview of the methodology used for AP retrieval.
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3.2.1. Google Earth Engine (GEE) for AP Retrieval

Google launched GEE in 2010 to store and process Earth observation data in a more
reliable and time-efficient way [35]. This platform is valuable when the goal is to process
open-access Earth observation data over a large area or long-time interval and in a timely
manner [42,43].

To retrieve CO, NO2, SO2, and O3, the Sentinel-5 images were first converted from
level 2 to level 3 through the harpconvert tool by the bin spatial operation. Then, after
applying the spatial and temporal filters, CO, NO2, SO2, and O3 products from the study
area were generated.

Two types of output were then generated, including maps and statistical reports. The
results were verified using in situ data obtained from ground-based air pollution stations.

CO Retrieval

The silent killer, CO, is a poisonous and dangerous gas that is odorless, tasteless, and
invisible [44]. CO results from the incomplete burning of carbon. As part of Sentinel 5, the
CO product is available from 22 November 2018. The features of this product are given
in Table 4.

Table 4. Specifications of CO product.

Band Name Unit Min Max Description

CO_column_number_density mol/m2 −297 4.64 CO concentration.

H2O_column_number_density mol/m2 −46,536 3.45844 × 107 Water vapor column.

Cloud_height Meter −8341 5000 Scattered layer height.

Sensor_altitude Meter 828,542 856,078 Satellite height according to
WGS84 geodetic.

Sensor_azimuth_angle Degree −180 180 Satellite azimuth angle, East and
North WGS84.

Sensor_zenith_angle Degree 1 66 WGS84 Satellite elevation angle.

Solar_azimuth_angle Degree −180 180 Sun azimuth angle, East and
North angle WGS84.

Solar_zenith_angle Degree 9 80 Apex angle of the satellite is the
angle away from the vertical.

NO2 Retrieval

As a result of human activities, especially the burning of fossil fuels, millions of tons
of NO2 are produced every year [45]. In the GEE, NO2 is one of the Sentinel-5 products
that provides offline and in-live high-resolution images. The data on this product can be
accessed from 7 October 2018. The features of this product are given in Table 5.

Table 5. Specifications of NO2 product.

Band Name Unit Min Max Description

NO2_column_number_density mol/m2 −0.0006 0.0096 NO2 gradient column density ratio

Tropospheric_NO2_column mol/m2 −0.0064 0.0096 Vertical tropospheric column
of NO2

Stratospheric_NO2_column mol/m2 8.7 × 10−6 0.0001 Stratospheric NO2 vertical column

NO2_slant_column_number mol/m2 −51.4 × 10 0.003908 NO2 gradient column density

Tropopause_pressure Pa 0.00644 0.009614 Top pause pressure

Absorbing_aerosol_index Pa −14.43 10.67 Aerosol index

Cloud_fraction fraction 0 1 Effective cloud fraction
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Table 5. Cont.

Band Name Unit Min Max Description

Sensor_altitude Meter 828,543 0.856078 Satellite height according to WGS84
geodetic

Sensor_azimuth_angle Degree −180 180 Satellite azimuth angle, East and
North WGS84

Sensor_zenith_angle Degree 0.098 67 WGS84 Satellite elevation angle

Solar_azimuth_angle Degree −180 180 Sun azimuth angle, East and North
angle WGS84

Solar_zenith_angle Degree 8 82 Apex angle of the satellite is the
angle away from the vertical

SO2 Retrieval

As presented in Table 6, the GEE has provided a product for the analysis of SO2. NO2
data is accessible on the GEE platform from 10 July 2018.

Table 6. Specifications of SO2 product.

Band Name Unit Min Max Description

SO2_column_number_density mol/m2 −48 0.24 Concentration of vertical column of
SO2 at ground level.

SO2_column_number_amf mol/m2 0.1 3.397 Weighted average of cloudy and clear
air mass coefficient.

SO2_slant_column_number mol/m2 −0.147 0.162 SO2 correction column density
column slope.

Cloud_fraction Fraction 0 1 Effective cloud fraction.

Sensor_azimuth_angle Degree −180 180 Satellite azimuth angle, East and
North WGS84.

Sensor_zenith_angle Degree 0.09 67 WGS84 Satellite elevation angle.

Solar_azimuth_angle Degree −180 180 Sun azimuth angle, East and North
angle WGS84.

Solar_zenith_angle Degree 8 80 Apex angle of the satellite is the angle
away from the vertical.

SO2_column_number_15 km mol/m2 0 0 SO2 vertical column density at 15 km.

O3 Retrieval

The role of O3 in the thermal structure of the Earth and the balance of solar radiation
is critical as it prevents ultraviolet radiation from reaching the Earth’s surface. However,
O3 is considered a pollutant when its concentration in the lower atmosphere exceeds the air
quality standard threshold [46]. The GEE platform has provided a product to monitor and
review this critical issue, which provides a set of high-resolution images in real time. This
product’s data can be accessed from 7 October 2018, whose features are listed in Table 7.

Table 7. Specifications of O3 product.

Band Name Unit Min Max Description

O3_column_number_density mol/m2 0.025 0.3048 O3 between the surface and the top of the atmosphere.

O3_effective_temperature k 19.92 428.11 Mass coefficient of cloudy and clear air.

Cloud_fraction Fraction 0 1 The slope of the O3 condensation column.

Sensor_azimuth_angle Degree −180 180 Satellite azimuth angle, east and north.

Sensor_zenith_angle Degree 0.098 66.57 WGS84 satellite zenith angle.

Solar_azimuth_angle Degree −180 180 Sun azimuth angle, East and North angle WGS84.

Solar_zenith_angle Degree 8 102 Apex angle of the satellite is the angle away from the vertical.



Pollutants 2023, 3 262

3.2.2. Accuracy Assessment

Analyzing the accuracy of a retrieval by inversion compared to a standard assumed to
be correct is an important step in image analysis. In this regard, median absolute deviation
(MAD) [47], mean square error (MSE) [48], root mean square error (RMSE) [49], and mean
absolute percentage error (MAPE) [50] statistical analyses were applied to evaluate the
accuracy of results for AP retrieval. Equations (1)–(4) describe the MAD, MSE, RMSE, and
MAPE operators.

MAD =
∑n

t=1 |At − Ft|
n

(1)

MSE =
∑n

t=1 (At − Ft)

n
(2)

RMSE =

√
∑n

t=1 (At − Ft)
2

n
(3)

MAPE =
∑n

t=1

∣∣∣ At−Ft
At

∣∣∣
n

× 100 (4)

where n is the number of the AP station in the study area, At is AP recorded by station, and
Ft is AP obtained using the Sentinel-5.

4. Results

Using GEE, pollution parameter maps (CO, NO2, SO2, and O3) were extracted. By
coding in JavaScript language in the GEE, four pollution parameters of Sentinel-5 satellite
images were called. Using filters, the study years (2018 and 2019) and the location (Arak
city) were defined. Following that, images with clouds were filtered by defining cloud
filters, and average maps were extracted by defining average filters for both years. The
results of the spatiotemporal distribution of CO, NO2, SO2, and O3 in Arak are presented
in Figures 3–8 monthly, seasonally, and annually, respectively.

As we can see in Figure 3, for the year 2018, the highest amount of CO was recorded
in July and August (0.029 ppm). November was the month with the lowest amount of
CO. According to Figure 3, while the highest amount of NO2 was recorded in December
(22.06 ppm), the lowest was recorded in May (12.39 ppm). For SO2, the highest and lowest
amounts were related to July (33.54 ppm) and May (25.14 ppm), respectively, as shown in
Figure 3. As we can see in Figure 3, the highest amount of O3 was recorded in February
(0.148 ppm), while the lowest concentrations of O3 occurred in September and October
(0.122 ppm).

According to Figure 4, for the year 2019, the highest amount of CO was recorded in
January (0.030 ppm). March was the month with the lowest amount of CO. According
to Figure 4, while the highest amount of NO2 was recorded in January (30.19 ppm), the
lowest was recorded in April (11.08 ppm). For SO2, the highest and lowest amounts were
related to October (45.38 ppm), as shown in Figure 4. As we can see in Figure 4, the highest
amount of O3 was recorded in April (0.147 ppm), while the lowest amount of O3 belonged
to November (0.117 ppm).

As we can see in Figure 5, for the year 2018, the seasonal highest amount of CO was
recorded in spring and summer (0.028 ppm). According to Figure 5, the highest amount of
NO2 was found in fall (17.39 ppm), and the lowest was found in spring (12.18 ppm). For
SO2, the highest and lowest amounts were related to winter (102.12 ppm) and summer
(29.05 ppm), respectively, as shown in Figure 5. As we can see in Figure 5, the highest
amount of O3 was recorded in winter (0.142 ppm), while the lowest amount of O3 belonged
to summer (0.124 ppm).
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Figure 3. Cont.
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Figure 3. The monthly spatiotemporal distribution of CO, NO2, SO2, and O3 in January, Febru-
ary, March, April, May, June, July, August, September, October, November, and December for the
year 2018.

According to Figure 6, for the year 2019, the seasonal highest amount of CO was
recorded in spring, summer and winter (0.028 ppm). According to Figure 6, while the
highest amount of NO2 was recorded in winter (21.96 ppm), the lowest amount was
recorded in spring (11.66 ppm). For SO2, the highest and lowest amounts were related to
winter (101.25 ppm) and summer (28.01 ppm), respectively, as shown in Figure 6. As we
can see in Figure 6, the highest amount of O3 was recorded in spring (0.136 ppm), while
the lowest amount of O3 was associated with summer and fall (0.122 ppm).

As we can see in Figures 7 and 8, the annual amount of CO was recorded at about
0.027 ppm, which increased (0.030 ppm) in 2019. According to Figures 7 and 8, the highest
amount of NO2 was 13.25 ppm for the year 2018, which increased to about 16.05 ppm
in 2019. As we can see in Figures 7 and 8, the annual amount of SO2 was recorded at
35.60 ppm, which increased to 38.05 ppm in 2019. According to Figures 7 and 8, the highest
amount of O3 in 2018 was 0.133 ppm, which decreased to 0.129 ppm in 2019.

Tables 8 and 9 also show the results of the accuracy assessment for annual and seasonal
AP retrieval. Our findings revealed the efficiency of Sentinel-5 AP products based on GEE
for mapping and monitoring CO, NO2, SO2, and O3. According to Table 8, the annual CO
was estimated with MAD, MSE, RMSE, and MAPE of 0.11, 0.017, 0.13, and 4.16, respectively,
for the year 2018. In addition, the annual NO2 was calculated with MAD of 2.23, MSE
of 8.16, RMSE of 2.58, and MAPE of 10.5, as shown in Table 8. As seen in Table 8, the
annual SO2 was estimated with MAD, MSE, RMSE, and MAPE of 4.62, 21.34, 4.62, and
18.20, respectively. Finally, the annual O3 was calculated with MAD of 2.36, MSE of 5.56,
RMSE of 2.36, and MAPE of 10.47, as presented in Table 8.

As we can see in Table 8, the annual CO was estimated with MAD, MSE, RMSE, and
MAPE of 0.16, 0.03, 0.17, and 6.75, respectively, for the year 2019. Additionally, the annual
NO2 was calculated with MAD of 2.03, MSE of 5.83, RMSE of 2.41, and MAPE of 9.2, as
shown in Table 8. As seen in Table 8, the annual SO2 was estimated with MAD, MSE, RMSE,
and MAPE of 4.31, 18.57, 4.31, and 12.24, respectively. Finally, the annual O3 was calculated
with MAD of 4.6, MSE of 21.16, RMSE of 4.6, and MAPE of 16.99, as shown in Table 8.
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Figure 4. Cont.
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Figure 4. The monthly spatiotemporal distribution of CO, NO2, SO2, and O3 in January, Febru-
ary, March, April, May, June, July, August, September, October, November, and December for the
year 2019.

Table 8. The results of accuracy assessment for annual AP retrieval.

Performance metrics 2018

CO NO2 SO2 O3

MAD 0.11 2.23 4.62 2.36

MSE 0.017 8.16 21.34 5.56

RMSE 0.13 2.58 4.62 2.36

MAPE 4.16 10.5 18.20 10.47

2019

MAD 0.16 2.03 4.31 4.6

MSE 0.03 5.83 18.57 21.16

RMSE 0.17 2.41 4.31 4.6

MAPE 6.75 9.2 12.24 16.99

Table 9. The results of accuracy assessment for seasonal AP retrieval.

Season Performance metrics 2018 2019

CO NO2 SO2 O3 CO NO2 SO2 O3

Spring

MAD 0.08 5.22 0.5 4.41 0.11 4.58 1.77 0.72

MSE 0.08 29.12 0.25 19.44 0.002 24.90 3.13 0.51

RMSE 0.09 5.39 0.70 7.81 0.12 4.99 1.33 1.27

MAPE 3.45 22.90 1.60 12.73 1.91 17.97 6.9 2.78

Summer

MAD 0.07 4.57 1.37 1.6 0.11 4.25 0.45 5.84

MSE 0.012 26.73 1.87 2.56 0.019 27.12 0.20 34.10

RMSE 0.1 5.17 1.17 2.83 0.11 5.20 0.67 10.35
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Table 9. Cont.

Season Performance metrics 2018 2019

MAPE 3.2 19.20 6.32 5.77 4.43 17.67 2.10 32.97

Fall

MAD 0.23 4.21 6.85 1.46 0.043 1.48 1.37 0.15

MSE 0.08 20.05 46.92 2.13 0.004 3.14 1.87 0.022

RMSE 0.29 4.47 2.61 2.58 0.069 1.44 1.17 0.26

MAPE 6.75 19.18 29.58 6.05 1.45 17.76 4.4 0.66

Winter

MAD 0.64 4.22 9.06 1.47 0.43 4.58 0.8 0.82

MSE 0.60 23.10 82.08 2.16 0.003 27.35 0.64 0.67

RMSE 0.77 4.80 3.009 2.60 0.055 5.23 0.89 1.45

MAPE 15.89 17.79 35.17 5.47 1.43 27.28 2.40 6.36

Figure 5. The seasonal spatiotemporal distribution of CO, NO2, SO2, and O3 in Arak for the year
2018 in spring, summer, fall, and winter.
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Figure 6. The seasonal spatiotemporal distribution of CO, NO2, SO2, and O3 in Arak for the year
2019 in spring, summer, fall, and winter.

Figure 7. The annual spatiotemporal distribution of CO, NO2, SO2, and O3 in Arak for the year 2018.
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Figure 8. The annual spatiotemporal distribution of CO, NO2, SO2, and O3 in Arak for the year 2019.

Table 9 also shows the results of the accuracy assessment for CO, NO2, SO2, and O3
retrieval. According to Table 9, for spring 2018, the seasonal CO, NO2, SO2, and O3 were
estimated with RMSE of 0.09, 5.39, 0.70, and 7.81, respectively. In addition, for summer
2018, the seasonal CO, NO2, SO2, and O3 were calculated with RMSE of 0.1, 5.17, 1.17, and
2.83, respectively, as shown in Table 9. As seen in Table 9, the seasonal CO, NO2, SO2, and
O3 were estimated with RMSE of 0.29, 4.47, 2.61, and 2.58, respectively, for fall 2018. Finally,
for winter 2018, the seasonal CO, NO2, SO2, and O3 were calculated with RMSE of 0.77,
4.80, 3.009, and 2.60, respectively, as shown in Table 9.

According to Table 9, for spring 2019, the seasonal CO, NO2, SO2, and O3 were
estimated with RMSE of 0.12, 4.99, 1.33, and 1.27, respectively. In addition, for summer
2019, the seasonal CO, NO2, SO2, and O3 were calculated with RMSE of 0.11, 5.20, 0.67,
and 10.35, respectively, as shown in Table 9. As seen in Table 9, the seasonal CO, NO2, SO2,
and O3 were estimated with RMSE of 0.069, 1.44, 1.17, and 0.26, respectively, for fall 2019.
Finally, for winter 2019, the seasonal CO, NO2, SO2, and O3 were calculated with RMSE of
0.055, 5.23, 0.89, and 1.45, respectively, as shown in Table 9.

5. Discussion
5.1. General Discussion

From a methodological standpoint, the AP can be computed using two methods:
ground-based methods and remote sensing technology. Ground-based methods are the
main approach to AP retrieval. These methods, however, are time-consuming and expen-
sive. Additionally, they lack frequent records in dynamic environments, such as cities.
Over the last decades, satellite-based models have been employed for AP retrieval. The
satellite-based technology is considered an innovative technique that can estimate and
monitor AP at dense spatial sampling intervals and large scales. The efficiency of satellite-
based data and methods such as the Terra Moderate Resolution Imaging Spectroradiometer
(MODIS), the Sentinel-5 Precursor (Sentinel-5P), Global Precipitation Measurement (GPM),
Soil Moisture Active and Passive (SMAP), the National Centers for Environmental Pre-
diction (NCEP), Climate Forecast System Reanalysis (CFSR), and the Global Land Data
Assimilation System (GLDAS) have proven useful for AP retrieval [12–38]. This study used
Sentinel-5 based on GEE to retrieve monthly, annual and seasonal CO, NO2, SO2, and O3
from 2018 to 2019. The results showed that satellite-derived data and applied methods
performed well for AP retrieval (Tables 8 and 9). The results of this study revealed that
remote sensing technology would make AP mapping and monitoring fast and easier in
dynamic areas, such as cities. Our findings also showed a strong correlation coefficient
between obtained values from pollution measuring stations and Sentinel-5 (Figures 9–12).
According to Figures 5 and 6, the concentration of pollutants in spring 2019 was the same
as 2018 for CO and decreased to about 0.52, 2.13, and 0.1 ppm in 2019 for NO2, SO2, and
O3, respectively. The same trend as spring existed for summer 2019 in the concentration
of CO, NO2, and SO2, as shown in Figures 5 and 6. The concentration of O3, on the other
hand, showed an increase of about 0.02 ppm in summer 2019 compared to summer 2018.
As we can see in Figures 5 and 6, while the concentration of CO and NO2 increased by
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about 0.002 and 4.49 ppm, respectively, from 2018 to 2019 in fall, the concentration of
SO2 and O3 decreased by about 3.63 and 0.006 ppm from 2018 to 2019, respectively. The
concentration of CO and NO2 increased by about 0.001 and 4.99 ppm, respectively, from
2018 to 2019 in winter. The concentration of SO2 and O3, however, decreased by about 0.87
and 0.008 ppm, respectively, from 2018 to 2019 in this season. In the domain of the annual
concentration of pollutants, there was an increase of 0.003, 2.08, and 2.45 ppm for CO, NO2,
and SO2, respectively, from 2018 to 2019, as shown in Figures 7 and 8. However, a decrease
of 0.004 ppm in the domain of O3 concentration was observed, according to Figures 7 and 8.

Figure 9. Cont.
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Figure 9. Linear regression correlation between seasonal CO, NO2, SO2, and O3 obtained using
Sentinel-5 (predicted data) and pollution measuring stations (actual data) for the year 2018.

According to Figure 9, the correlation coefficients (R2) for CO, NO2, SO2, and O3 in
spring 2018 were 0.9509, 0.5692, 0.9285, and 0.5627, respectively. The correlation coefficients
between the data obtained from Sentinel-5 and the ground data for summer 2018 were
0.5544, 0.7463, 0.9221, and 0.8601 for CO, NO2, SO2, and O3, respectively, as shown in
Figure 9. According to Figure 9, strong correlation coefficients of 0.970, 0.4627, 0.9307, and
0.7841 were found for CO, NO2, SO2, and O3, respectively, in fall 2018. In addition, the
correlation coefficients between the data obtained from Sentinel-5 and the ground data for
winter 2018 were 0.7117, 0.727, 0.9506, and 0.8748 for CO, NO2, SO2, and O3, respectively,
as shown in Figure 9. In general, strong correlation coefficients were estimated between
data obtained from remote sensing technology and ground-based data in all seasons, in
particular winter for the year 2018. The results of this research are in accordance with reports
received from the Environmental Organization of Central Province (https://markazi.doe.ir,
accessed on 1 February 2022).

According to Figure 10, the correlation coefficients for CO, NO2, SO2, and O3 in spring
2019 were 0.8974, 0.6174, 0.8959, and 0.5192, respectively. The correlation coefficients
between the data obtained from Sentinel-5 data and the ground data for summer 2019 were
0.92, 0.855, 0.8391, and 0.8298 for CO, NO2, SO2, and O3, respectively, as shown in Figure 10.
According to Figure 10, strong correlation coefficients of 0.917, 0.6275, 0.9326, and 0.8197
were found for CO, NO2, SO2, and O3, respectively, in fall 2019. In addition, the correlation
coefficients between the data obtained from Sentinel-5 and the ground data for winter 2019
were 0.9009, 0.9471, 0.8933, and 0.8332 for CO, NO2, SO2, and O3, respectively, as shown in
Figure 10. In sum, the results of the correlation coefficients between the predicted data from
remote sensing technology and actual data received from pollution measuring stations
demonstrated a difference (about <0.6) from 2018 to 2019 in all seasons. This difference
could be because of some missing data received from pollution measuring stations.

From Figure 11, it can be seen that strong correlation coefficients of 0.9509, 0.9344,
0.9344, and 0.8376 for CO, NO2, SO2, and O3, respectively, were obtained in 2018.

According to Figure 12, strong correlation coefficients of 0.9103, 0.8558, 0.9078, and
0.8133 were found for CO, NO2, SO2, and O3, respectively, in 2019.

https://markazi.doe.ir
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Figure 10. Linear regression correlations between seasonal CO, NO2, SO2, and O3 obtained using
Sentinel-5 (predicted data) and pollution measuring stations (actual data) for the year 2019.
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Figure 11. Linear regression correlations between annual CO, NO2, SO2, and O3 obtained using
Sentinel-5 (predicted data) and pollution measuring stations (actual data) for the year 2018.

Figure 12. Linear regression correlations between annual CO, NO2, SO2, and O3 obtained using
Sentinel-5 (predicted data) and pollution measuring stations (actual data) for the year 2019.

5.2. Monthly Distribution of AP in 2018 and 2019

Detailed zoning maps of Arak in 2018 showed that the most polluted areas were in
the city’s center (Areas 4 and 5), while the least polluted area was 3, which is in accordance
with reports received from the Environmental Organization of Central Province (Figure 3).
Using satellite images, it was found that the least pollution was recorded in area 3 due to
the presence of vegetation and the surrounding gardens. However, the highest distribution
of pollution occurred in area 1, which was due to the location of all small and large
industries of Arak city in this area, in accordance with collected data from air pollution
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measuring stations. According to Figure 3, the highest concentration of CO occurred in
July and August (0.029 ppm) for the year 2018. The highest concentration of NO2 was also
estimated for December (22.06 ppm). The highest concentration of SO2 occurred in August
(33.54 ppm). The highest value for O3 was estimated in February, as shown in Figure 3.

The pollution zoning maps for Arak city in 2019 showed the highest levels of pollution
in areas 1 and 2, and the least levels of pollution in area 3 (Figure 4). Based on the distribu-
tion of pollution using satellite images, it was found that area 3 had the least pollution. This
was due to the excellent vegetation and the surrounding gardens. However, area 1 had the
highest pollution, which was due to the location of all small and large industries of Arak
city in this area, which is in accordance with data received from the Environmental Orga-
nization of Central Province. As we can see in Figure 4, the highest concentration of CO
occurred in January (0.030 ppm) for the year 2019. The highest concentration of NO2 was
also estimated for January (30.19 ppm), while the highest concentration of SO2 belonged
to October (45.38 ppm). The highest value for O3 was estimated in April (0.147 ppm), as
shown in Figure 4.

5.3. The Effect of Land Use on Air Pollution in Arak City

Based on an analysis of land use and its effect on air pollution, it was found that the
most polluted area was the Arak industrial town, which is located in area 1. It has been
reported that the industrial factories of Arak play a significant role in the air pollution
of Arak city by producing suspended particles, carbonaceous oxides, nitrogenous oxides,
ammonia, etc. [41]. The least air pollution was found in area 3 due to the high density of
vegetation, which is in accordance with the identified green areas on the land use map.

Arak is surrounded by hills and the city’s highlands are located to the south and the
city’s industrial area is to the southeast. The prevailing winds in this area are from the west
and southwest. Regardless of other natural factors, due to the average speed (between 7
and 10 K/H) of the prevailing winds, pollution from the industries in the east of this city
cannot penetrate into the residential areas [51]. Due to the topography, the south and west
of Arak city are surrounded by highlands, and, since local winds are typically from the east
and northeast, this factor, as well as the fact that January and April are the months with the
greatest percentage of still air, contributed to creating an inversion, which is in accordance
with reports received from the Environmental Organization of Central Province.

5.4. Limitation of the Study

Although satellite images are a promising source of data for generating estimates at
high spatial resolution on a local scale as they capture some spatial variability, they are
limited to generalizing in certain areas [52,53]. Future work should focus on combining
additional datasets that are readily available globally (e.g., additional bands of satellite
data, normalized difference vegetation index (NDVI)/enhanced vegetation index (EVI),
meteorology, digital elevation model (DEM)) that can be combined with meter-scale satellite
images to generate better estimates of air pollutants. In addition, future efforts will need to
assess the sensitivity of image-based models to images collected with different temporal
aspects, such as time of day and season.

6. Conclusions

Recent progress in Earth observation technology, and remote sensing in particular, has
turned remote sensing into big data technology, which demands efficient, effective, and
cost-effective data-driven methods. Therefore, applying different data-driven approaches
and comparing their efficiency can be considered as the state of the art for remote sensing
sciences which is the object of the current research. This study employed Sentinel-5 images
based on GEE to retrieve CO, NO2, SO2, and O3 parameters. According to our findings,
Sentinel-5 images based on GEE turned out to be the most efficient approach for AP
retrieval. This study also confirmed a strong correlation between CO, NO2, SO2, and O3
retrieved from Sentinel-5 and air pollution stations.
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Our findings confirm that GEE is appropriate to exploit vast amounts of data, and
that it can be regarded as a testbed for machine learning algorithms. In the investigation of
air pollution in urban areas, satellite images in both time and space can provide optimal
management and high accuracy. Considering the fact that most pollution monitoring
station data are incomplete due to malfunctioning devices, AP classification from remote
sensing images is a challenging task because of the wide range of features that can cause
heterogeneity. The present study addresses this complexity by utilizing an automated data-
driven platform. This study proves the applicability of Sentinel-5 in GEE for providing
a general framework for the monitoring of CO, NO2, SO2, and O3 at various levels and
scales. The results of this study contribute to monitoring programs for CO, NO2, SO2, and
O3 changes in dynamic environments, such as cities. The results are readily generalizable
to more complex Earth feature monitoring.
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