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Abstract: The ecological and children’s Health Risk Assessments (HRA) of Copper (Cu) in aquatic
bodies ranging from rivers, mangrove, estuaries, and offshore areas were studied using the Cited Cu
Data in The Sediments (CCDITS) from 125 randomly selected papers published from 1980 to 2022. The
ecological and children’s HRA were assessed in all CCDITS. Generally, local point Cu sources (8%)
and lithogenic sources were the main controlling factors of Cu concentrations. The present review
revealed three interesting points. First, there were 11 papers (8%) documenting Cu levels of more
than 500 mg/kg dw while China was the country with the highest number (26%) of papers published
between 1980 and 2022, out of 37 countries. Second, with the Cu data cited from the literature not
normally distributed, the maximum Cu level was higher than all the established guidelines. However,
the median Cu concentration was lower than most of the established guidelines. The median values
of the geoaccumulation index (Igeo) indicated a status of ‘unpolluted‘ and ‘moderate contamination’
for the contamination factor (CF), and ‘low potential ecological risk’ for the ecological risk (ER) of
Cu. However, the Cu ER could be based at present on the above mentioned 8% of the literature
in the present study. Third, the calculated hazard index (HI) values were found to be below 1,
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indicating no potential chance of Cu non–carcinogenic effects in both adults and children, except for
children’s HI values from Lake Pamvotis of Greece, and Victoria Harbor in Hong Kong. Thus, regular
monitoring (every 2 years), depending upon the available resources, is recommended to assess the
ecological–health risk of Cu pollution in aquatic bodies to abate the risk of Cu exposure to children’s
health and avoid injurious impacts on the biota. It can be concluded that there is always a need for
the mitigation and management of a Cu exposure risk assessment that can be used successfully for
screening purposes to detect important human health exposure routes. Consequently, any sediments
contaminated with Cu require rapid sediment remediation techniques.

Keywords: copper; sediments; geochemical indexes; health risk assessment

1. Introduction

There are five main reasons why copper (Cu) in sediments is focused on in this review.
Firstly, based on global resources data in [1,2], Chile remains the dominant country with
658.2 Mt Cu and world copper resources were at least 1860 Mt Cu (including China).
This is mainly caused by human mining for Cu due to the high demand for Cu used in
manufacturing industries [1]. Currently, Cu and its compounds have been widely applied
in various industries, including textiles, antifouling paints, electrical conductors, plumbing
fixtures and pipes, cooking utensils, wood preservatives, pesticides fungicides, fertilizers,
etc. [3].

Secondly, due to social-economic activities such as smelting, electroplating, leather
production, electronics, agriculture (fertilisers and pesticides), and aquaculture sectors,
Cu in sediments can be a secondary source of pollution in aquatic ecosystems. All of
the aforementioned activities add to the stress on water and the environment by creating
enormous amounts of municipal [4,5] and industrial wastewater [6,7] including potentially
harmful compounds such as Cu.

Thirdly, Cu enters the marine environment mostly through rivers and estuaries, it is
typically linked to particulate debris which settles and is absorbed into the sediment [8].
As a result, surface sediments constitute the major store and sink for metals and pollutants
in aquatic ecosystems [8,9].

Fourthly, human expansion has prompted an increasing release to the environment
due to rapid urbanization and industrialization which have led to significant increases in
the levels, causing substantial pollution to the aquatic ecosystem. Therefore, it is important
to address the role of anthropogenic activities on Cu pollution [8] in relation to many
environmental media including sediments which end up as human health risks through
different exposure pathways [10–13].

Fifthly, this topic has generated a lot of articles in the literature. According to the
Scopus database, there were 674 publications published in scholarly journals between 1930
and May 2022 that featured the words ‘copper’ and ‘sediments,’ according to the Scopus
database. If the names of the papers included words such as ‘metals’ and ‘elements,’ the
number would be substantially higher. If non-Scopus indexed journals were taken into
consideration, the number would likely be substantially greater. These figures demonstrate
the need to keep an eye on Cu levels in aquatic sediments. It is realistic to expect that
monitoring studies will become more common in the future.

Sediment refers to a layer of solid particles on the bed of a water body, which consists
of any insoluble particulate matter [14]. These particulate matters could be transported from
one area to others by various means, for instance, wind, and flowing rivers. Throughout
the fate of a sediment particle, there might be a temporary settlement in between its origin
and its final resting place. These sediments may also become settled in a delta at the river
mouth or become beach deposits by the action of tides, currents, and waves. Coastal
sediments are a major sink for metals of both anthropogenic and natural origin [15]. Under
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certain conditions, these accumulated metals in sediment may be remobilized, changing
the surrounding aquatic ecosystem [16].

Both direct and indirect pathways are likely to play a role in the entry of sediment-
bound metals into the human body [17]. Therefore, heavy metal pollution in coastal
ecosystem is a serious concern. Despite these concerns, there are few studies that have
focused on or have investigated the impact of sediment-bound metals on human health
directly. The Cu bound to beach sand particles could enter the human body via inhalation of
the sand or sedimentary particles, and direct ingestion via hand-to-mouth action especially
by children [18]. Therefore, this implies that humans, especially children playing on
beaches, may be exposed to these metal contaminants settled in the sand.

The Hazard Index (HI), Hazard Quotient (HQ), or Target Hazard Quotient (THQ) are
used to measure the health risk posed by toxic metals. The HI value reported in urban park
soils [18] and kindergartens soils [19] was noted to be comparatively higher in children than
adults. Therefore, the risks posed by the ingestion route of sedimentary particles by both
children and adults were the highest, followed by dermal contact/inhalation. Therefore,
the health risk assessments (HRA) for children should be given a higher priority.

The objectives of this paper are to (a) review Cu concentrations in the sediments from
125 publications from 1980 to 2022 based on Scopus and Google Scholar databases and,
(b) make commentary based on the reassessment of ecological–health risks of Cu from
125 articles on adults and children’s HRA based on the reported Cu concentrations in
the sediments.

2. Materials and Methods
2.1. Data Collection

Cu data reported in Scopus and Google Scholar databases ranging from 1980 to April
2022 were used. A total of 125 publications were randomly selected, with a special focus on
different regions and countries. The keywords for the search were ‘copper’ and ‘sediment’
which were mostly found in the titles of the articles. However, only those papers that
reported the Cu ranges (minimum and maximum concentrations) were selected in the
present study for easy and direct comparative purposes, and the standardization of the
calculation of the ecological–health risks of Cu.

The current review used Moher et al. [20]’s Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) systematic literature review approach to contribute
to the existing body of information on ‘copper’ and ‘sediment.’ PRISMA is an evidence-
based reporting standard that can be used for critical evaluation. Figure 1 shows the metrics
of the formal method that were updated for this review work.

2.2. Data Treatment
2.2.1. Geoaccumulation Index

The geoaccumulation index (Igeo) has been shown to be a useful tool for assessing
sedimentary heavy metal pollution [21]. The degree of Cu contamination in the area was
determined using the geoaccumulation index (Igeo). The calculation of Igeo was based on
Equation (1) [21].

Igeo = log2

(
Sample
1.5 × Bg

)
(1)

where sample is the total Cu concentrations in the sediments and Bg is the geochemical
background value for Cu. The present study used the background concentrations in the
earth’s upper continental crust (UCC) which were Cu (14.3 mg/kg) based on Wedepohl [22].

The value (1.5) was the correction factor to mitigate the lithogenic effluents. There are
six established classifications of pollution: ‘practically unpolluted’ (<0), ‘unpolluted’ (0–1),
‘moderately polluted’ (1–2), ‘moderately polluted to strongly polluted’ (2–3), ‘strongly
polluted’ (3–4), ‘strongly to very strongly polluted’ (4–5), and ‘very strongly polluted’
(>5) [21].
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2.2.2. Ecological Risk Index

Firstly, the calculation of the contamination factor (CF) was based on the pollution of a
single Cu factor in Equation (2).

CF =
Cs

CB
(2)

where CF is the contamination factor; Cs is the mean Cu concentration in the sediment;
and CB is the Cu background level by based on Wedepohl [22], as mentioned previously.
According to Hakanson [23], 4 classifications for CF values are ‘low contamination’ (CF< 1),
‘moderate contamination’ (1 ≤ CF < 3), ‘considerable contamination’ (3 ≤ CF < 6), and
‘very high contamination’ (CF ≥ 6).

Later, the calculation of the ecological risk (ER), which is the potential ecological risk
of a single element, was calculated based on Equation (3).

ER = TR × CF (3)

The Cu toxic response factor (TR) value used in the present study was 5.00 [22].
According to Hakanson [23], 5 classifications for the ER are ‘low potential ecological risk’
(ER < 40), ‘moderate potential ecological risk’ (40 ≤ ER < 80), ‘considerable potential
ecological risk’ (80 ≤ ER < 160), ‘high potential ecological risk’ (160 ≤ ER < 320), and ‘very
high ecological risk’ (ER ≥ 320).
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2.2.3. Human Health Risk Assessment

Human health risk assessment (HHRA) of sediments is commonly used to assess
both carcinogenic and non-carcinogenic risks to people through three exposure pathways:
ingestion, inhalation, and skin contact. The HHRA technique was based on the US Envi-
ronmental Protection Agency’s guidelines and Exposure Factors Handbook [24–27]. The
average daily doses (ADDs) (mg/kg day) of Cu through ingestion (ADDing), inhalation
(ADDinh), and dermal contact (ADDder) for both children and adults were calculated by
using Equations (4)–(6) as follows:

ADDing = Csediment

(
IngR × EF × ED

BW × AT

)
× 10−6 (4)

ADDinh = Csediment

(
IngR × EF × ED
PEF × BW × AT

)
(5)

ADDder = Csediment

(
SA × AF × ABS × EF × ED

BW × AT

)
× 10−6 (6)

where all the abbreviations are given and explained in Table 1. The daily levels of exposure
to metals (mg/kg day) by ingestion, inhalation, and dermal contact are represented by
ADDing, ADDinh, and ADDder, respectively. The hazard quotient (HQ) and hazard index
(HI) were used to calculate the non-carcinogenic risk (NCR) of Cu in this investigation [24,25].
Table 1 shows the definition, exposure parameters, and reference values used in the literature
to determine the intake values and health hazards of Cu in sediments.

Table 1. Definition, exposure factors, and reference values used to estimate the intake values and
health risks of potentially toxic metals in sediment for the present study.

Factor Definition Unit
Values

References
Children Adults

IngR Ingestion rate of sediment mg/day 200 100 [24]
ED Exposure duration Years 6.0 24 [24]
PEF Particle emission factor m3/kg 1.36 × 109 1.36 × 109 [24]
AT Average time Days 365 × ED 365 × ED [25]
BW Bodyweight of the exposed individual kg 15 55.9 [28]
EF Exposure frequency days/year 365 365 -
SA Exposed skin surface area cm2 1600 4350 [28]
AF Skin adherence factor mg/cm day 0.20 0.70 [29]

Cu RfDing Reference dose for ingestion mg/kg day 4.00 × 10−2 4.00 × 10−2 [30]
Cu RfDinh Reference dose for inhalation mg/kg day 4.02 × 10−2 4.02 × 10−2 [30]
Cu RfDder Reference dose for dermal contact mg/kg day 1.20 × 10−2 1.20 × 10−2 [30]

InhR Inhalation rate of sediment m3/day 7.63 12.8 [31]
ABF Dermal absorption factor Unitless 1.00 × 10−3 1.00 × 10−3 [32]

The HQ is the ratio of a metal’s ADD to its reference dose (RfD) for exposure pathways
that are similar [26]. The RfD (mg/kg day) is the maximum daily dosage of metal from a
certain exposure pathway that is considered not to pose a significant risk of detrimental
consequences to sensitive individuals over their lifetime, including both children and
adults. Table 1 shows the RfD (mg/kg day) values of Cu used in this study for ingestion,
inhalation, and dermal contact. If the ADD is less than the RfD value (HQ < 1), no adverse
health effects are expected, but if the ADD exceeds the RfD value (HQ > 1), there are likely
to be detrimental health effects [24,26].

HI, which is the total of the HQs in the three exposure paths, is used to calculate
the NCR [33–35]. A HI value less than 1.0 indicates that there was no considerable risk
of non-carcinogenic consequences. A HI of greater than 1.0 indicates the possibility of



Pollutants 2022, 2 274

non-carcinogenic effects. Non-carcinogenic effects are likely to have a favorable relationship
with the increase in the HI value [31]. The HI was calculated according to Equation (7).

HI = ∑ HQi = ∑
(

ADDi

RfDi

)
(7)

Data Analysis

All graphical bar charts were plotted using the KaleidaGraph (Version 3.08, Sygn-
ergy Software, Eden Prairie, MN, USA). The overall statistics were also obtained from
KaleidaGraph.

3. Results and Discussion
3.1. Ecological Risk Assessments

Figure 2 shows the world map of Cu levels in the sediments cited in the 125 publica-
tions [36–160]. The detailed Cu concentrations (mg/kg, dw) in the sediments reported in
the 125 papers are provided in Tables S1 and S2.
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A total of 37 countries (Table 2; Table S1) were coincidentally documented with their
respective Cu concentrations in the sediments, mostly reporting the Cu concentrations
in combination with other heavy or trace metals in the sediments from the coastal areas,
mangrove, rivers, lakes, or estuaries. Clearly, many studies of Cu levels were reported in
Asian countries, and there were scattered studies in Europe and African countries. Among
the Asian countries, China topped the list with 33 papers, followed by Malaysia (19), India
and Tunisia (7), Bangladesh (6), Japan (4), Hong Kong (3), Singapore (3), Indonesia (3),
Iran (3), Pakistan (3), 8 other countries with two papers, and 18 other countries with one
paper [36–160].

Table 2. Overall number of papers (NP) reported in different countries out of the 125 papers cited in
the present study.

No. Country NP No. Country NP

1 China 33 20 Netherlands 1
2 Malaysia 19 21 Ghana 1
3 India 7 22 Greece 1
4 Tunisia 7 23 Hungary 1
5 Bangladesh 6 24 Ivory Coast 1
6 Japan 4 25 Libya 1
7 Hong Kong 3 26 Morocco 1
8 Indonesia 3 27 Netherlands 1
9 Singapore 3 28 Nigeria 1
10 Iran 3 29 Oman 1
11 Pakistan 3 30 Papua New Guinea 1
12 Algeria 2 31 Philippines 1
13 Australia 2 32 Senegal 1
14 Taiwan 2 33 USA 1
15 Thailand 2 34 South Africa 1
16 Nigeria 2 35 Oman 1
17 Turkey 2 36 Spain 1
18 Egypt 2 37 Romania 1
19 Serbia 2

Based on the 125 reviewed papers, there were 11 papers (8%) documenting the total
Cu concentrations of more than 500 mg/kg dw (Tables S1 and S2; Figure 3). These papers
included Lake Pamvotis of Greece (24985 mg/kg; [92])> Victoria Harbor of Hong Kong
(3790 mg/kg; [46]) > Scheldt Estuarine of the Netherlands (2600 mg/kg; [47]), Old Nakagawa
River of Tokyo, Japan (1565 mg/kg; [76]) > Mvudi River of South Africa (1027 mg/kg; [66]) >
polluted drainage sediments from Peninsular Malaysia (1019 mg/kg; [72]) > Kaohsiung Har-
bor in Taiwan (946 mg/kg; [68]) > Serbia (870 mg/kg [98], 859.9 mg/kg; [143]) > Kaohsiung
Harbor in Taiwan (760 mg/kg; [108]) > Shima River of China (630 mg/kg; [110]). From
these top eleven citations with elevated Cu levels in the sediments, the levels in the Kaoh-
siung Harbor of Taiwan were reported to be twice as high, between 760–946 mg/kg, by
Chen et al. [68] and Chen et al. [108]. However, based on HQ, only Lake Pamvotis of Greece
(24,985 mg/kg; [92]) was found to have a HQ value over 1, indicating a potential chance of
Cu NCR at this site.

Table 3 shows the comparisons of the concentrations of Cu sediment quality guidelines
in the available literature, with the overall statistics of the 125 reviewed papers containing
Cu data in the present study. There are three patterns that can be observed.
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Figure 3. The calculated values of the geoaccumulation index (Igeo), contamination factor (CF), and
ecological risk (ER), based on the Cu concentration ranges (mg/kg dry weight) (minimum and
maximum) in the sediments cited from 125 papers in the literature published between 1980 and 2022.
The citation numbers follow the detailed reference numbers presented in Tables S1 and S2.

Firstly, the average values of skewness and kurtosis were 14.8 and 224, respectively.
This indicates that the Cu data cited from the literature were not normally distributed in
which the Cu data were not within the normality ranges for skewness (−2 to +2) [161–163]
and kurtosis (−7 to +7) [161,162]. Therefore, we used medians, rather than means, for a
more meaningful interpretation with the understanding of outliers which were represented
by the extremely elevated Cu data in 8% (11 papers as mentioned previously) of the
data cited. Secondly, based on the 125 papers, the Cu concentrations (mg/kg dry weight)
ranged from 0.12 to 24,985. The maximum Cu level was higher than all the established
guidelines in Table 3. However, the median Cu concentration (22.95) was lower than all the
established guidelines [22,23,164–168], except for the threshold effect level (TEL) [168] and
upper continental crust (UCC) [22].

Thirdly, the Igeo values ranged from −7.48 to 10.19. This indicates that they ranged
from ‘practically unpolluted’ to ‘very strongly polluted’ with a median (0.09) status of
‘unpolluted’ based on Muller [21]’s classifications. The CF values ranged from 0.01 to 1747.
This indicates that they ranged from ‘low contamination’ to ‘very high contamination’
with a median (1.61) status of ‘moderate contamination’ according to Hakanson [23]. The
ER values ranged from 0.04 to 8736. This means that they ranged from a ‘low potential
ecological risk’ to a ‘very high ecological risk’ with a median (8.02) status of ‘low potential
ecological risk’ according to Hakanson [23].
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Table 3. Comparison of the overall statistics of the Cu calculated values of the geoaccumulation index (Igeo), contamination factor (CF), and ecological risk (ER),
hazard quotient ingestion (HQing), hazard quotient inhalation (HQinh), hazard quotient dermal contact (HQder), hazard index (HI) for adults (A) and children (C)
based on the Cu concentrations ranges (mg/kg dry weight) (minimum and maximum) in the sediments cited from 125 papers in the literature published between
1980 and 2022 with the different established guidelines values.

Cu Igeo CF ER A HQing A HQinh A HQder A HI C HQing C HQinh C HQder C HI Reference

Minimum 0.12 −7.48 0.01 0.04 5.50 × 10−6 5.03 × 10−10 5.58 × 10−7 6.06 × 10−6 4.10 × 10−5 1.12 × 10−9 2.19 × 10−7 4.12 × 10−5 This study
Maximum 24,985 10.19 1747 8736 1.15 1.05 × 10−4 1.16 × 10−1 1.26 8.54 2.32 × 10−4 4.55 × 10−2 8.58

Mean 209 0.25 14.65 73.23 9.62 × 10−3 8.79 × 10−7 9.73 × 10−4 1.06 × 10−2 7.16 × 10−2 1.95 × 10−6 3.82 × 10−4 7.19 × 10−2

Median 22.95 0.09 1.61 8.02 1.05 × 10−3 9.62 × 10−8 1.07 × 10−4 1.16 × 10−3 7.85 × 10−3 2.14 × 10−7 4.18 × 10−5 7.88E × 10−3

SD 1609 2.52 113 563 7.41 × 10−2 6.76 × 10−6 7.47 × 10−3 8.12 × 10−2 5.50 × 10−1 1.49 × 10−5 2.93 × 10−3 5.53 × 10−1

SE 102 0.16 7.12 35.6 4.68 × 10−3 4.28 × 10−7 4.73 × 10−4 5.13 × 10−3 3.48 × 10−2 9.45 × 10−7 1.85 × 10−4 3.50 × 10−2

Skewness 14.8 0.21 14.8 14.8 1.48 × 10 1.47 × 10 1.47 × 10 1.47 × 10 1.47 × 10 1.47 × 10 1.47 × 10 1.47 × 10
Kurtosis 224 1.06 224 224 2.24 × 102 2.24 × 102 2.24 × 102 2.24 × 102 2.24 × 102 2.24 × 102 2.24 × 102 2.24 × 102

Guidelines Cu Igeo CF ER A HQing A HQinh A HQder A HI C HQing C HQinh C HQder C HI Reference

ERL 34.0 0.66 2.38 11.89 1.56 × 10−3 1.42 × 10−7 1.58 × 10−4 1.72 × 10−3 1.16 × 10−2 3.16 × 10−7 6.20 × 10−5 1.17 × 10−2 [166]
ERM 270 3.65 18.88 94.41 1.24 × 10−2 1.13 × 10−6 1.26 × 10−3 1.36 × 10−2 9.23 × 10−2 2.51 × 10−6 4.92 × 10−4 9.28 × 10−2 [166]

ISQV-low 65.0 1.60 4.55 22.73 2.98 × 10−3 2.72× 10−7 3.03 × 10−4 3.28 × 10−3 2.22 × 10−2 6.05 × 10−7 1.18 × 10−4 2.23 × 10−2 [167]
ISQV-high 270 3.65 18.88 94.41 1.24 × 10−2 1.13 × 10−6 1.26 × 10−3 1.36 × 10−2 9.23 × 10−2 2.51 × 10−6 4.92 × 10−4 9.28 × 10−2 [167]

TEL 18.7 −0.20 1.31 6.54 8.57 × 10−4 7.83 × 10−8 8.70 × 10−5 9.45 × 10−4 6.39 × 10−3 1.74 × 10−7 3.41 × 10−5 6.43 × 10−3 [168]
PEL 108.2 2.33 7.57 37.83 4.96 × 10−3 4.53 × 10−7 5.04 × 10−4 5.47 × 10−3 3.70 × 10−2 1.01 × 10−6 1.97 × 10−4 3.72 × 10−2 [168]
PRL 50.0 1.22 3.50 17.48 2.29 × 10−3 2.09 × 10−7 2.33 × 10−4 2.53 × 10−3 1.71 × 10−2 4.65 × 10−7 9.11 × 10−5 1.72 × 10−2 [23]
UCC 25.0 0.22 1.75 8.74 1.15 × 10−3 1.05 × 10−7 1.16 × 10−4 1.26 × 10−3 8.54 × 10−3 2.33 × 10−7 4.56 × 10−5 8.59 × 10−3 [164]
UCC 14.3 −0.58 1.00 5.00 6.56 × 10−4 5.99 × 10−8 6.66 × 10−5 7.22 × 10−4 4.89 × 10−3 1.33 × 10−7 2.61 × 10−5 4.91 × 10−3 [22]
UCC 28.0 0.38 1.96 9.79 1.28 × 10−3 1.17 × 10−7 1.30 × 10−4 1.41 × 10−3 9.57 × 10−3 2.61 × 10−7 5.10 × 10−5 9.62 × 10−3 [165]

Note: UCC = Upper continental crust; ERL = Effects range low; ERM = Effects range median; ISQV-low = Interim sediment quality value-low; ISQV-high = Interim sediment quality
value-high; TEL = Threshold effect level; PEL = Probable effect level; PRL = Pre-industrial reference level. SD = standard deviation; SE = standard error.
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3.2. Health Risk Assessments

Figure 4 shows the values of HQing, HQinh, HQder, and HI for adults and children
based on the Cu data ranges (minimum, Table S1 and maximum, Table S2) in the sediments
cited from 125 papers in the literature published between 1980 and 2022. The overall
statistics of the above values are provided in Table 3.
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Figure 4. The values of hazard quotient ingestion (HQing), hazard quotient inhalation (HQinh), hazard
quotient dermal contact (HQder), and hazard index (HI) for adults and children based on the Cu data
ranges (minimum and maximum) in the sediments cited from 125 papers in the literature published
between 1980 and 2022. The citation numbers follow the detailed reference numbers presented in
Tables S1 and S2.
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For children, the values of HQing, HQinh, HQder, and HI ranged from 4.10 × 10−5 to
8.54 (mean: 7.16 × 10−2), 1.12 × 10−9 to 2.32 × 10−4 (mean: 1.95 × 10−6), 2.19 × 10−7 to
4.55 × 10−2 (mean: 3.82 × 10−4), and 4.12 × 10−5 to 8.58 (mean: 7.19 × 10−2), respectively.

For adults, the values of HQing, HQinh, HQder, and HI ranged from 5.50 × 10−6 to
1.15 (mean: 9.62 × 10−3), 5.03 × 10−10 to 1.05 × 10−4 (mean: 8.79 × 10−7), 5.58 × 10−7 to
1.16 × 10−1 (mean: 9.73 × 10−4), and 6.06 × 10−6 to 1.26 (mean: 1.06 × 10−2), respectively.

Based on Figure 4, the HI values for children from Lake Pamvotis of Greece (24,985 mg/kg; [92]),
and Victoria Harbor in Hong Kong (3790 mg/kg; [36] exceeded 1.00. For adult HI values, only
the HI value from Lake Pamvotis of Greece exceeded 1.00. This indicates a non-carcinogenic risk
of Cu. These HI values were mainly due to the HQing value (> 90%) when compared to HQinh
and HQder.

4. Comments on the Hazard Quotients of Children

From the present estimation of the children’s HRA based on Cu levels in the sediments,
it is rather far from reality. The ingestion pathway was included in this study with two
assumptions that (1) children spend more time on the beach (or muddy sediment areas
in the coastal areas), and (2) the sediment-bound metal pollutants could be introduced
into children’s bodies via the direct ingestion of small particles by hand-to-mouth action.
The first assumption is arguable as the definition for children should be well defined.
Most of the papers reviewed in this study did not clearly specify the age groups for their
children’s HRA. Children aged 1–2 years old are different from those who are 10–12 years
old. The resistance and sensitivity of the children’s bodies are very different between
these two groups of ages. Therefore, if those aged 2 to 12 years old are all considered
as children, erroneous assumptions could be reached, and as a result, the conclusions
would be invalid. Perhaps specifying the body weight of children could reduce the error.
However, a similar body resistance and maturity of children between 5 and 12 year old,
with a similar body weight of 40 kg, can be assumed. Since obesity among children has
become an issue nowadays, the estimation of HQ through the ingestion pathway in a child
is somewhat questionable.

The present ecological risk of Cu indicated the median concentration of Cu is generally
low and not considered a polluted or a low ecological risk. The localized Cu contamination
of the 11 papers exceeding 500 mg/kg dry weight is focused on in this commentary section,
as shown in Table 4.

Table 4. Comments on the 11 papers with Cu concentrations over 500 mg/kg dry weight from
125 papers in the literature.

No. Locations Cu > 1000 Sources Comment Reference

1 Lake Pamvotis,
Greece 24,985

Industrial activities; urban
stormwater runoff;
agriculture, livestock, and
domestic sewage.

The report offered baseline data for future
research on the anthropogenic influences on the
protection and management of Lake Pamvotis,
which have been a concern of city officials for
decades. Cu must be continuously monitored for
ecological and health risks.

[92]

2 Victoria Harbor,
Hong Kong 3790

Traffic due to its vicinity to
the airport runway and the
industrialized area.

Evidently, the increasing levels of toxic Cu in
Hong Kong were attributable to the escalating
population density, rapid industrialization, and
land reclamation. This study can therefore offer
a significant source of information about Cu
mitigation and pollution management in
Victoria Harbor.

[46]
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Table 4. Cont.

No. Locations Cu > 1000 Sources Comment Reference

3 Scheldt Estuarine,
Netherlands 2600 Industrial discharges.

According to the study, the Cu load in the
Scheldt estuary has decreased dramatically for
three decades (1960–1990). The extent to which
these alterations represent a shift in
manufacturing strategies, or a purification of
industrial waste is unknown. Cu must be
regularly evaluated for environmental and
health hazards.

[47]

4 Old Nakagawa River,
Japan 1565

Industrialization,
urbanization, deposition of
industrial wastes and others.

The paper stated that, in order to monitor the
trend of Cu contamination, industrial
establishments, the municipal council, and/or
the government of Japan should reevaluate the
current waste treatment and disposal methods
for urban sediments or introduce more
effective ones.

[76]

5 Mvudi River,
South Africa 1027

Release of partially treated
wastewater effluents from the
Thohoyandou wastewater
treatment plant, runoffs from
agricultural soil, landfill sites
very close to the river and
other non-point sources, such
as atmospheric deposition

The paper emphasized that higher Cu
concentrations in river sediments could
potentially have deleterious impacts on aquatic
life. Cu must be continuously monitored for
ecological and health risks.

[66]

6
Polluted drainage
sediments from
Peninsular Malaysia

1019 Untreated urban wastes;
industrial effluents.

The paper highlighted the importance of treating
effluents in this drainage basin. In order to limit
unlawful discharges and dumping into
drainages, it is necessary to increase public
awareness. Cu must be continuously monitored
for ecological and health risks.

[72]

7 Kaoshiung Harbor,
Taiwan 946

Industrial and municipal
wastewaters were discharged
from the neighboring
industrial parks and river
basins. The Cu area was
severely affected by untreated
or partially treated industrial
effluents and
municipal sewages.

The paper shed light on the properties and
mechanisms of metal distributions in Kaohsiung
Harbor sediments. The data would aid in the
creation of more effective watershed and harbor
management methods to minimize metal
discharges into the harbor, as well as a strategy
for the cleanup of polluted sediments.

[68]

8 Serbia 870 Not specifically mentioned.

The study indicated that the river sediments
examined were highly polluted with Cu. Cu
must be continuously monitored for ecological
and health risks.

[98]

9 Korbevačka River,
Serbia 859.9 Mining and processing of

metal ore/ smelting.

The paper stressed the need for a human
exposure risk assessment of Cu for screening
purposes in order to identify significant
exposure pathways and establish the urgency of
sediment cleanup measures.

[143]

10 Kaohsiung Harbor,
Taiwan. 760

Derived from the polluted
Canon River and the Love
River, Salt River, and
Jen-Gen River.

The paper provided harbor management
departments with a great deal of important
information, particularly on the Cu derived from
the four major contamination sources, allowing
for the future control of Cu according to the
severity of contamination in sediments.

[108]

11 Shima River, China. 630
Industrial effluents; receiving
discharges from
Huizhou City.

The paper showed that the Cu bound to
sedimentary particles may be resuspended and
migrate from the upper and medium reaches to
the lower reaches, endangering the safety of the
local water supply. Therefore, improving
sediment quality necessitates the control of
pesticide application, the reduction in industrial
wastewater discharge, and the implementation
of a river channel dredging project.

[110]
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It can be synthesized that, based on Table 4, there is always a need for mitigation,
and the management of an exposure risk assessment of Cu that may be utilized effectively
for screening purposes in order to identify significant human health exposure routes.
Consequently, all Cu-polluted sediments necessitate immediate sediment cleanup measures.
Lastly, there is a need for the ongoing monitoring of Cu’s ecological and health risks in
the future.

5. Conclusions

The present review on Cu concentrations in the sediments based on 125 publications
revealed three interesting points. First, there were 11 papers (8%) documenting Cu levels
of more than 500 mg/kg dw while China was the country with the highest number (26%)
of papers published between 1980 and 2022, out of 37 countries. Second, given that
the Cu data cited from the literature were not normally distributed, the maximum Cu
level was higher than all the established guidelines in Table 3. However, the median Cu
concentration (22.95) was lower than most of all the established guidelines. The Igeo median
value indicated a status of ‘unpolluted’, while the CF median value indicated a status of
‘moderate contamination’, and the ER median value indicated a status of ‘low potential
ecological risk’. However, ecological risks for Cu could be based at present on the above
mentioned 8% of the literature in the present study. Third, all calculated HI values were
found to be below 1, indicating no potential chance of Cu non–carcinogenic effects in both
adults and children, except for children’s HI values from Lake Pamvotis of Greece, and
Victoria Harbor in Hong Kong.

It can be synthesized that, based on Table 4, there is always a need for mitigation,
and the management of an exposure risk assessment of Cu that may be utilized effectively
for screening purposes in order to identify significant human health exposure routes.
Consequently, all Cu-polluted sediments necessitate immediate sediment cleanup measures.
Lastly, it is recommended that regular monitoring of the ecological–health risks of Cu in
sediments should be carried out in view of the expansion of domestic wastes related to
urbanization, and the mismanagement of effluents related to industrialization. All these
issues are complicated since they are a blend of socio-economic and environmental factors.
It is difficult to decide which one is responsible in the first place, and which one will be the
priority from the governing body’s point of view.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pollutants2030018/s1, Table S1. The minimum range of Cu
concentrations (mg/kg dry weight) in the sediments cited from 125 papers the literature published
between 1980 and 2022, and their calculated values of geoaccumulation index (Igeo), contamination
factor (CF), ecological risk (ER), hazard quotient ingestion (HQing), hazard quotient inhalation
(HQinh), hazard quotient derma contact (HQder), hazard index (HI) for adults and children based
on the cited Cu data; Table S2. The maximum range of Cu concentrations (mg/kg dry weight)
in the sediments cited from 125 papers the literature published between 1980 and 2022, and their
calculated values of geoaccumulation index (Igeo), contamination factor (CF), ecological risk (ER),
hazard quotient ingestion (HQing), hazard quotient inhalation (HQinh), hazard quotient derma contact
(HQder), hazard index (HI) for adults and children based on the cited Cu data.
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