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Abstract: Numerous micropollutants, especially endocrine-disrupting compounds (EDCs), can
pollute natural aquatic environments causing great concern for human and ecosystem health. While
most of the conversation revolves around estrogen and androgen, glucocorticoids (GCs) are also
prevalent in natural waters. Despite the fact that GCs play a crucial role in both inflammatory and
immunologic development activities, they are also detected in natural waters and considered as
one of the EDCs. Although many researchers have mentioned the adverse effect of GCs on aquatic
organisms, a complete management technology to remove these pollutants from surface and coastal
waters is yet to be established. In the current study, six glucocorticoids (prednisone, prednisolone,
cortisone, cortisol, dexamethasone, and 6R-methylprednisolone) have been selected according to
their higher detection frequency in environmental waters. The concentration of selected GCs ranged
from 0.05 ng/L to 433 ng/L and their removal efficiency ranged from 10% to 99% depending on the
water source and associated removal technologies. Although advanced technologies are available
for achieving successful removal of GCs, associated operational and economic considerations make
implementation of these processes unsustainable. Further studies are necessary to resolve the entry
routes of GCs compounds into the surface water or drinking water permanently as well as employ
sustainable detection and removal technologies.

Keywords: endocrine disrupting compounds; hormones; glucocorticoids; environmental and health
impact; wastewater treatment plant; micropollutants

1. Introduction

In the past few decades, thousands of endocrine-disrupting compounds (EDCs) en-
tered into the water cycle through different ways [1–4]. According to EPA, endocrine-
disrupting chemicals (EDCs), which can be both natural and synthetic substances in our
environment, are typically pharmaceutical and personal care products (PPCPs) and foods
that interfere with hormone biosynthesis and metabolism resulting in a deviation from nor-
mal homeostatic control or reproduction [5]. Humans and animals are exposed primarily
through ingestion of contaminated foods (e.g., fish, meat, and dairy products) [6]. Inciden-
tally, steroid and hormone mimics have also been addressed among chemicals (natural or
synthetic) used for preparing and preserving foods [7,8]. Processed and packaged foods
(Finnish foods mostly meat and fish, tinned food, infant formula etc.) can accumulate the
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traces of EDCs that leaching out of materials used in assembling, processing, transporting,
and storage [9–11].

Discharge of hospital waste, household sewage, agricultural and industrial waste, husbandry
waste, and usually inadequate removal in many wastewaters treatment plants (WWTPs) are the
most common sources for EDC’s hazardous presence in the environment [12–20]. It is worthwhile
to note that primary and secondary treatments target organic matter, carbon, nutrients removal
which are generally 106 times higher in concentration in a typical wastewater compared to GCs.
Therefore, GCs would be outcompeted by carbon or nutrients in primary and secondary treat-
ments and employment of tertiary treatment for removal of GCs would be more effective. Several
studies have reported and mentioned that chronic exposure to these chemicals or compounds can
cause exotic and unanticipated side effects [4,12–15]. Despite being warned of in the past few years,
EDCs still were not considered as a priority pollutant that would require mandatory removal from
wastewater. Currently adopted treatment processes in WWTPs unfortunately are generally not
successful in eliminating EDCs completely [2,3]. Moreover, identification of these compounds is
challenging in a conventional WWTP as they are present at a very low concentration, typically at
the range of ng/L [16]. Researchers have introduced new analytical techniques for EDCs detection.
As a result, recently published works focused on detection of EDCs in natural waters, and a lot of
evidence and examples suggest that the impact of EDCs on aquatic wildlife and human is very
concerning [12,16–18]. There has been a shift towards more awareness regarding the presence of
EDCs in the environmental waters and their associated impacts [19]. Moreover, steroid hormones
have also attracted increased concerns, such as EDCs [14,16]. Although estrogen and androgen
have occupied most of the debate, glucocorticoid (GCs) have become a major concern due to
their detection in the environment [1,21,22]. It is reported that the amount of excretion masses of
natural and synthetic GCs is quite a bit higher than estrogen and androgen [23,24]. Considering
the usage of GCs to be of both synthetic and natural sources, the existence and fate of these
compounds in the environment requires greater consideration.

Natural GCs, such as cortisol, cortisone and other metabolites are linked with the control
of energy supply, suppress the responses to inflammation and infection in vertebrates [25].
On the other hand, synthetic GCs (prednisone, prednisolone, dexamethasone, and 6R-
methylprednisolone) have been used greatly in human and muscle size in animals [26]. GCs
can be classified into five groups on the basis of their structure: hydrocortisone, acetonide,
betamethasone, halogenated and prodrug esters [27–29]. Therefore, a large volume of GCs
(both natural and synthetic) may be released into surface water through the effluent of sewage
treatment plants (STPs) or runoff and become a major potential warning for the aquatic
environments [30].

Livestock manure carries several organic contaminants; mostly steroids such as GCs, and
their fates in the course of composting are still undetermined. For an example, the amount of
synthetic glucocorticoid prednisolone detected in feces ranged from (3.0 to 32.0 ng/g), in flush
water (88.6 to 1390 ng/L), and suspended particles (8.0 to 42.6 ng/g) respectively [31,32]. On
the other hand, detection amount of dexamethasone in the flush water and suspended particles
was about 260 ± 27.9 ng/L and 35.0 ± 5.1 ng/g, respectively [33].

The principal use of GCs is for inflammation treatment of asthma, skin issue and joint
pain problems [24,34–36]. GCs are also being used in significant amounts in many personal
care products, like creams and lotions for face and body skin related issues [37–42]. Hence,
a significant amount of natural and synthetic GCs may be drained into nearby surface
water and finally infiltrate into ground water [30]. As a result of inadequate removal from
WWTPs, GC activity has been demonstrated in 27% of surface water samples (n = 115)
collected in more than 14 states in the US, more than 10 countries in Europe, and many
riverine areas of China, Japan, Australia, etc. [40,43–45].

GC compounds can severely damage the reproduction of both domestic and wild
animals, leading to sexual abnormalities, intersex development, reduced sperm counts,
decreased fertility rate, and hormone-dependent cancer in humans [20,22,24,34,40]. There
is a growing concern that aquatic organisms are in great danger due to the abundance
of GCs in the environment. In this study, we have investigated the pathways for GCs’
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introduction into environmental waters and consequences of along with the removal of GCs
in conventional wastewater treatment processes. This review included literature published
from different scientific databases and publishers including Google Scholar, ScienceDirect,
Elsevier, Springer, Scopus, NCBI, and NIH. The search item included: glucocorticoids
(GCs), hormone (GCs) removal, micro pollutant removal, removal of GCs from wastewater,
steroidal hormones, and removal efficiency of GCs as the search keywords.

2. Properties of Frequently Found Glucocorticoids in Water

Some natural and synthetic GCs from different sources of waste disrupt the nor-
mal activities of the endocrine glands [25,45–49]. Some of these GCs adversely affect
the growth and production of fish and plants [4,22,45,49]. GCs are categorized into five
structural groups: acetonide, hydrocortisone, betamethasone, halogenated and labile pro-
drug esters [28–30,50]. Natural and synthetic glucocorticoids hormones: betamethasone,
betamethasone D5, budesonide, clobetasol, clobetasol propionate, clobetasol propionate,
corticosterone, cortisone, cyproterone acetate, desonide, dexamethasone, dexamethasone-
21-acetate, DMS, flumetasone, fluorometholone, fluticasone propionate, halometasone,
hydrocortisone (cortisol), hydroxycortisol, medroxyprogesterone, megestrol, megestrol
acetate, methylprednisolone, 6α- mifepristone, prednisolone, prednisone, prednisone, tri-
amcinolone acetonide, triamcinolone acetonide and many more [51–65]. Among them,
six of the most frequently found GCs in water—cortisol, cortisone, dexamethasone, pred-
nisolone, prednisone, and 6α-methylprednisolone—were considered in this review [36].

The human body employs natural GCs as a vital part of the feedback mechanism to
reduce inflammation [66,67]. Synthetic glucocorticoids, sometime known as exogenous
GCs are used to treat different diseases caused by an overactive immune system [66–71].
Common diseases like asthma, allergies, both human and animal autoimmune diseases as
well as sepsis are some of the examples of conditions caused by an overactive immune sys-
tem [21,72–77]. In typical wastewater, these compounds are present at a lower concertation
(ng/L) which is generally 106 times lower than carbon or nutrients content of wastewater.
The degradation of micropollutant can be classified into four categories, e.g., easily degrad-
able, moderately degradable, poorly and very poorly degradable. Removal of these GCs
compounds in wastewater treatment plants (WWTPs) has been extensively studied and
the scientists has considered biological treatment technology as critical to micropollutant
removal [78]. Biological wastewater treatments have to consider some factors regarding
micropollutant removal, such as solid retention time (SRT) [79,80] pH, hydraulic reten-
tion time (HRT) [81], nitrification [82,83] redox conditions [84,85], suspended/attached
growth [86], and heterotrophic activity [87]. Although the main driving factor for the
permanently biological micropollutant removal at WWTPs is still unknown [88]. The
reason behind this issue can be some critical parameters being unknown or the degradation
of different micropollutants having different structures in mixed micropollutant groups.
Hence, due to competition between the targeted compounds, a conventional WWTP gener-
ally cannot remove micropollutants effectively which eventually poses a threat to aquatic
beings once they are released into the receiving waterbodies with the treated wastewater
effluent [89–91].

GCs have a tetra cyclic structure: three cyclohexane rings as well as cyclopentane
rings [92,93]. Although natural and synthetic GCS have different cyclic networks, they
have some common ring networks all around their physical properties (Table 1) [94]. To
predict their occurrence and fate into the natural and engineered scientific environment,
physical and chemical characteristics of GCs compounds need to be considered. GCs do
not dissolve well in water [89]. Octanol–water partition coefficient (Kow) is a partition
coefficient defined as a ratio of dissolving a chemical compound in octanol phase and
concentration in water of aqueous phase at a specific temperature mostly under the equi-
librium conditions [95–99]. Kow value represents the absorption and dissolution of any
compounds [76,77,100]. Although dispersion of GCs between aqueous solution and natural
surroundings is always relative in nature, octanol-water partition coefficient is a good
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choice for solubility characterization [95,96]. From Table 1, the log of Kow for frequently
found GCs compounds is in the range of 1.4–3.5 [89,91,94,101]. Although comparing
with some of the estrogens (e.g., 17 α-ethinylestradiol (3.67–4.15) [102,103], 17 β-estradiol
(3.94–4.01) [102,103], estrone (2.45–3.43) [102,103], estriol (2.55–2.81) [102,103], the Kow
values of GCs are moderately low. This range means that, GCs compounds hydrophilicity
is moderate, and they tend to be predominantly distributed which means they tend to
adsorb onto solid surface in the solid waste environments [95,98]. A considerable number
of total GCs released by humans and animals are in the form of conjugated metabolites in
their urine [98]. Although the polar conjugates are inactive biologically, their solubility is
higher compared to those not conjugated [101].

Table 1. Properties of six frequently found glucocorticoids (GCs) in water.

Compounds CAS Molecular Weight
(g/mole) log Kow Formula Structure

Cortisol 152-58-9 362.5 3.5 C21H30O5
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3. Glucocorticoids’ Sources and Pathways in Environment

There are two major ways for GCs to get into the environment. It can enter natural
environment firstly, through point sources (for an example, WWTPs) and secondly, non-
point sources (such as agricultural runoff) [104–107]. Glucocorticoids are generally used in
veterinary medicine to recover or reconstruct muscle strength as well as muscle growth
and development in animals [95]. As a result, a huge portion of glucocorticoids, excreted
mainly by mammals’ urine, is considered to be discharged into the aquatic environment.
These compounds are released into the environment through STPs effluent, seasonal wet
runoff, and thus contribute as potential pollutants in the environment [96]. A mixture
of GCs has been detected in drinking water which were then tracked back to the source
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river water used as the influent for the drinking water treatment process [106]. Presence of
GCs was detected in both the influent and effluent (ending in the water supply systems
and tap water) of the drinking water processes in those cases [107]. Table 2 shows all
the targeted GCs found in wastewater in different countries which eventually end up in
natural waterbodies due to lack of effective treatment of GCs in wastewater. As stated
above, not only human, but also animal, wastes are the primary sources of GCs in aquatic
environments. Both treated solid and liquid wastes are recognized as potential pathways
for these compounds to make their way into the environment [108–112]. Figure 1 shows
the contamination of the different parts of the environment due to the GCs.

Table 2. Environmental and health impact of glucocorticoids.

Compounds
Effluent

Concentration
(ng/L)

Toxicity and Impacts Sources References

Prednisolone or
beclomethasone 0.7–1.7

Studies showed a significant
increase of plasma glucose levels
in fathead minnow; also number
of leukocytes in the peripheral
blood was decreased and fold
changed in the transcripts of

more genes.

Europe: United Kingdom,
The Netherlands, Spain,
Switzerland, Hungary,
Wastewater in France,

Hospital Wastewater in
Netherlands, Surface water
in Spain, (Czech and Slovak

republics Sewage
and River water)

[13,113–115]

Cortisol 100–145

It was reported that cortisol
suppress immune function in

fish. The exposure of zebrafish to
cortisol (145 ng/L) could cause

the accelerated hatching,
increased significant level of

heart rate, detoriorate the muscle
contractions, and genetic

expression changes.

Asia: Japan (Ehime
Prefecture), China (Sewage

Treatment Plants (STPs) and
Receiving River Waters

Beijing), India, Malaysia,

[21,55,77,115–117]

Dexamethasone
(Betamethasone) >0.1–1.7

Dexamethasone or
betamethasone affected

adversely on the reproduction,
growth, and development in
fathead minnow (Pimephales

promelas); this could affect the
development, reproduction,

growth and mRNA expression
of amphibians and fish.

Oceania: Australia (River
water and municipal sewage) [20,26,118–122]

Prendnisone 0.2–100

Several stuies have showed that
the presense of prendnisone
made increase of se rum free

amino acid levels significantly in
common carp (Cyprinus carpio),

morphological changes with
swimming behavior, and

adverse effects on physiology of
zebrafish at the exposure

concentration of 100 ng/L.

New Zealand: New Zealand
(municipal sewage) [23,42,123,124]
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Table 2. Cont.

Compounds
Effluent

Concentration
(ng/L)

Toxicity and Impacts Sources References

Cortisone 1.3–433

It has been reported that unlike
cortisol, unexpected exposure

(91 ng/L) could cause the
accelerated hatching, increased

significant level of heart rate,
detoriorate the muscle

contractions, and genetic
expression changes in Zebra fish

North America: USA,
Drinking water

in Canada, Mexico.
[58,116,120,124,125]

6α-methylprednisolone 60–91

Serum free amino acid levels
was increased in common carp

(Cyprinus carpio) due to
6α-methylprednisolone.

South America: Wastewater
in Uruguay and Brazil,

shallow lakes
system Argentina

[113,115,123,124]
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4. Adverse Effects of Glucocorticoids’ in Natural Environment

The adverse effects GCs’ due to the discharge of effluents from WWTPs to the aquatic
environments are affected by several factors including effluent volume, the concentration
of the targeted compounds in wastewater, the water flow rate of the receiving river, mete-
orological or climate conditions, and probably some other factors that affect dissipation
through dilution and/or degradation. Table 2 summarizes all the findings collected from
the respective articles. Some of the studies reported detection of GCs in environmental
samples and showed adverse effects on fishes even at a lower concentration (in the range
of ng/L) [116,118–120,126].

Exposure to cortisol (concentration range of 100–145 ng/L) and clobetasol propi-
onate (concentration range of 60–91 ng/L) could damage the immune system of zebrafish
severely [119,120]. Increased heart rate, contractions of muscle degradation, acceleration
of hatching, and changes in generic expressions are some of the major incidents reported
due to cortisol and clobetasol propionate exposure [116]. As genes encode proteins, so do
proteins control cell function [127]. In consequence, the thousands of genes asserted in a
singular cell determine the exact activity or capability of that cell [128]. A glucocorticoid
receptor works as a hormone-dependent major component that controls the expression
of glucocorticoid-responsive genes [129–131]. Prednisolone exposure up to 100 ng/L
concentration can lead to shifts in the morphology, swimming nature and physiology of ze-
brafish [126]. Dexamethasone exposure might negatively affect the reproductivity, muscle
growth and cause deviation in mRNA expression of amphibians and fish [118,121,126].

A recently published study showed that the individual exposure of zebrafish to
cortisone at a concentration of 0.7–1 µg/L, 6α-methylprednisolone at a concentration of
0.5–1 µg/L and clobetasol propionate at about 60–91 ng/L resulted in transcriptional and
physiological effects [132]. All the six GCs showed adverse effects including increased heart
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rate and, in some extent, fold changes in the transcripts of genes. Prednisolone metabolite
was reported to show some activities of mineralocorticoid and influences sedative, anticon-
vulsant and anxiolytic effects in fishes [133,134]. Rainbow darter (Etheostoma caeruleum) was
also reported to be impacted by GCs near in Grand River Canada [132]. Presence of GCs in
the water changed the diversity as well as the structure of the gut content microbiome of
the rainbow fish [132,135].

On the other hand, halogen atoms (Cl, F) presence in some GCs can make their activity
very strong in contrast to their natural counterparts and make them more recalcitrant
in WWTPs and other water treatment plants [136–140]. Some studies mentioned low
sperm count in men, sexual health deterioration, and breast cancer in women due to the
exposure to GCs [36,141–144]. Additionally, some natural and synthetic GCs that were
not emphasized in this study could also affect aquatic environments negatively [144].
Fundamental understanding of environmental and health impacts of GCs on humans and
animals are challenging as the process involves long-term studies investigating side effects
long-term after the exposure, and variable age and time of exposure [113,145,146].

5. Glucocorticoids Compounds Removal Methods Efficiency

Despite the fact that the existing wastewater treatment plants are designed for the
removal of nutrients, partial removal of GCs has been detected in different cases [124].
Nonetheless, large differences in the efficiency of GC removal have been varied. The
removal efficiency varies between 10 to 98% in different countries based on location
and concentrations [147]. Different removing technologies accentuate on the relevance
of geographical location parameters [148]. For the last two decades, advancement in
technical analysis has empowered scientists to rethink about the occurrence and fate of
natural and synthetic GCs in wastewater treatment plants even in ng/L level [108,147].
Removal efficiency of treatment plants regarding the six major GCs are listed in Table 3.
The conventional treatment plants have three major facilities, namely as preliminary,
primary, and secondary. Tertiary treatment is needed while discharging the effluent to the
ground water or surface waters. Possible removal methods of GCs from treatment units
include volatilization, photocatalysis, biological degradation, nanotechnology, chlorination,
adsorption, Fe (VI) treatment as a tertiary treatment technology [117,149–157]. Table 3
shows the effect of each reported method in various studies.
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Table 3. Engineering processes and their efficiency for Glucocorticoid’s removal.

Process Removal Efficiency References

Adsorption with nano particles,
e.g., Fe (VI)

nanoparticle adsorption
Highly Effective (80–99%) [95]

Adsorption with activated carbon Highly Effective (98%) [150–152]

Sorption Effective (98%) [108,117]

Photocatalysis (µg/liter levels) Effective (>95%) [158–162]

Chlorination

Activated sludge systems
combined with chlorination in

tertiary treatment has been
effective (95%)

[108]

Combination of reverse osmosis
and micro-filtration

Depends on the concentration
of GCs. (56–90%) [163]

Advanced oxidation processes
(Ozone, UV/H2O2, photo-Fenton

processes)
Highly Effective (<90%) [151]

Combination of ozonation and
granular activated carbon (GAC) Moderately Effective (70–85%) [151,163]

Ultrafiltration

Not Effective (~8%) but for
hydrophobic membranes (such
as Cortisone) its efficiency goes

beyond 80%

[154]

Activated sludge systems with
UV disinfection Not Effective (49%) [163]

Combination of membrane
filtration, ultra-filtration

Depends on the filtration type,
size, and effluent concentration [95]

Attached growth process Varies between compounds,
Moderately Effective [135,150]

Microfiltration membranes
Not Effective (<18% unless

combines with activated carbon
or ultrafiltration)

[153,154,164]

Coagulation and flocculation Not Effective (<10%) [108,117,145,149,165]

6. Conclusions

Water quality issues have garnered a significant attention worldwide. Over the years,
the challenge is to conserve aquatic ecosystems, to secure quality of aquatic lives and to
minimize negative impacts on human health. Conventional WWTPs generally cannot
remove GCs effectively, affecting the receiving environment and human health negatively
eventually. Therefore, potentially unsafe GCs may enter the surface waters and sometime in
ground water. As a result, a majority number of GCs compounds remain a problem within
the existing legal norms. Among all the treatment processes, absorption with activated
carbon, other absorbents or nanoparticles, oxidation methods relative to other technologies
show greater efficiency in GCs removal. Although filtration alone cannot effectively remove
GCs, combination of filtration with other technologies can remove GCs efficiently [151–154].
Across many countries, wastewater effluent is considered as one of the major sources of
GCs in aquatic environments. However, surface runoff, as well as livestock sewage, are
also significant sources of these compounds. Removal technologies and their efficiency
varies according to the wastewater composition and treatment infrastructures. This leads
to differences in degree of accuracy in implementation of removal technologies for GCs
removal. Consequently, there is an inconsistency in inspecting GC’s fate and occurrences
in different types and stages of wastewater treatment processes, especially quantification
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of very low concentrations of GCs in stabilized sludge. There are some operational factors
such as temperature, pH, solubility, and many other engineering parameters that are
still not analyzed well for GCs characterization and removal purposes. Based on the
investigations of the secondary data in this study, it can be concluded that more scientific
case-study-based research should be conducted to determine GCs compounds fate and
transport in water resources, their selection and detection techniques, along with the best
management practices and the most economically feasible removal technologies.
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